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NATIONAL'ADVISORY~COMMITTEE FOR AERONAUTICS

TECENICAL MEMCRANDUM 1246

HYDRODYNAMIC PROPERTIES OF PLANING SURFACES
AND FLYING BOATS*

By N. A, Sokolov

INTRODUCTION

The study of the hydrodynamic procperties of planing bottoms
of flying boats and seaplane floats is at the present time based
exclusively on the curves of towing tests conducted in tanks.

In order to provide a rational basis for the test procedure in
tanke and practical design data, a theoretical study must be made
of the flow at the step and relations derived that show not only
qualitatively but quantitatively the inter-relations of the various
factors involved.

The general solution of the problem of the development of
hydrodynamic forces during the motion of the seaplane float or fly-
ing boat 1s very difficult for it 1s necessary to glve a three-
dimensional solution, which does not always permit reducing the
analysis to the form of workable computation formulas, On the
other harnd, the problem 1s complicated by the fact that the object
of the analysis 1s concerned with two fluid mediums, namely, air
and vater, which have a surface of density discontinulty between
them,

The thecretical and experimental investigations on the hydro-
dynamica of a ship cannot be completely carrled over to the design
of floats and flylng-boat hulls, because of the difference in the
shape of the contour lines of the bodies, and, because of the
entirely different flow condltions from the hydrodynamic view-
point, Thus in ship construction, only the hydrostatic forces are
considered and the hydrodynamic lifting forces are entirely ignored;
in flying-bocat construction this procedure cannot be followed because

*"Materialy po Gidrodinamicheskomu Raschetu Glisserov 1
Gidrosamoletov,." CAHI Report No. 149, 1932, pp. 1-39.
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for the working speeds of the planing surface (of the order of 60

to 100 km/hr) the hydrodynamic forces take up the greatest part of
the weight of the structure, only a small part of the weight being
supported by the hydrostatic forces due to the water displacement.

This entire analysis was conducted on the assumption of two-
dimensional flow. A plcture of the flow about the seaplane float
in the relative motion at the instant after rising on the step is
given in figure 1. The lines of flow 1D going from infinlty and
meeting at the surface of separation of the air and water mediwms
separate at point D, where they meet the float, the streamline of
the air passing above, and flowing arourd the float along the line
DCB; the particles of water, moving along the line DEB wet the
contour of the float below., At point B, these two boundary lines
of the gaseous and ligquid mediums again meet forming the separating
surface BEH,

In the case of the flow about a two-step planing bottom in a
two-dimensional ideal flow, the flow picture will have a somewhat
different appearance (fig. 2). The air particles lying on the line
of flow (separating surface) ID will, as before, flow about the
above-water part of the body DCF, The water particles meeting on
the streamline LD in contact with the particles of air wet the
surface of the body starting at the point D, At point B, the
water particles leave the contour of the planing surface, wet the
rear part BKN (in an actual flow, the region of suction), and at
point N they again meet the surface, leave it at point F and
continue along the separating surface FH.

In an actual flow for a finite span of the planing surface, the
flow picture in the above-water part will differ considerably from
the picture Jjust given but the flow picture of the below-water part

remains essentially the same.

This paper develops, in general form, the 1ift and drag equa-
tions for the motion of a solld body on a separating surface. Then,
congidering the solld body as a half-submerged flat plate, these
formulas are modified somewhat and the 1ift and drag formulas for
the planing flat plate are obtained., By evaluating the experimental
data, the analytical expressions are supplemented with test curves

and finally all data required for the hydrodynamic computation of
8 geaplane float or flying boat with a flat bottom are obtained,
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1. MOTION OF SOLID BODY AT BOUNDARY OF TWO FLUID
o N , MEDIUMS OF DIFFERENT DENSITY
‘In the general case, this problem may be formulated as follows:

‘The sollid body A moves forward with constant velocity Vb in
such a manner that at all times during the motion the part DCB 1is
in the fluid medium I of density 015 whereas the part bounded by
the contour DEB 1is in the fluid medium II of density p, (fig. 3).

In considering the relative motion, it is assumed that the
x-axls coincides with the surface separating the flulds 1n the
undisturbed state and 1s directed along in the direction of motion,
the y-axis being at right angles and directed up.

The flows are assumed two-dimensional; both flows are potential,
and the separating surface in the relative motion 1s fixed.

In passing from fluid I to fluld II, there is a discontinuity
in the density and in the first derivatives of the pressure with
respect to the coordinates, Moreover, there is a velocity discon-
tilnulty at the separating surface., At an infinite distance in front
of the body, both fluids are assumed to be relatively at rest; phys-
ically this assumption 1s comparable to assuming that in the motion
of the solid body over the water surface there is no tail or head
wind,

Because medium I possesses all the properties of two-dimensional
flow, the usual hydrodynamic equations of two-dimensional flow can
be applied and the resultant pressure from flow I, on the portion
of body A which is bounded by the line BCD and wetted by fluld I,
can be obtained. The resultant pressure of flow II on the remaining
part of body A, which is bounded by the contour DEB and wetted
by fluid II, can be found by means of a similar manner of operation
with medium II, The total force exerted on the body by fluids I
and IT is equal to the gecmetric sum of the forces exerted separately

on the moving body by each flow,

In the following discussion, all the results are expressed in
terms of fluid II. The final formulas for medium I will be the same
as for medium II except for change in the contour of integration and
replacement of Py and 72 by Py and 715 indicating that the
mass and weight densities are now referred to medium I. For conven-
ience the subscripts indicating that the magnitudes refer to medlum II

are omitted.
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For steady motion with velocity potential, the pressure at any
point of the wetted contour BED by medium II is determined by the
Bernoulli-Lagrange equation

' 2
p=C-poT -9 (1)

The components of the pressure along the coocrdinate axes for the
element ds of the contour may be written

2
np,(pds) = (- C+ol 4 7y> dy

2
npy(pds) = (C -p V? - 7y>d.x

The components of the force P, exerted on the solid body by
medium IT along the axis are obtained by integrating these expres-
sions over the contour BED, These components are denoted by X,
and Yp; then

X2=-f Cd.y+f‘ 7ydy+§° Ve ay
BED BED EDB
> (2)
BED BED BED J

The Bernoulli constant € 1s determined by the conditions at

infinity (y =0, V = Vo P = po) and is given by

2
C=py+0—5 (3)
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In medium II, let the flow be determined by the complex potential
function

_where P, 1is the velocity potential and wz is the stream function,

_ With regard to the velocity potential ®, 1t should be noted
that for flows I and II the form proposed by N, E. Joukowsky, for
the flow about a wing, wlll be used:

Q= - Vox + £(x,y)

where f(x,y) 1is a function of the coordinates that satisfy the
Laplace equation.

With regard to the function f(x,y), the following point may
be made: The derivatives of the function f£(x,y), Of/dx, and
of/dy, which give the added (disturbance) flow velocities produced
by the moving bedy, have these properties: At an infinlte dlstance
in front of the moving body and below and above the body, the deriv-
atives are of the order of smallness l/R; at an Infinite distance
behind the moving body, but sufficlently near the separation surface,
the derivatives are finite,

In the motion of a body of a homogeneous-infinite fluid the
derivatives Of/dx and Of/dy, everywhere with increasing distance
from the body, are of the order of smallness 1/R,

Because the 1ine BED 1is a streamline,
ap = Vds
ay = 0

Add to the right side of the expression for X, +the sum of the
terms
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' 2
of of of of of
BED ' BED
and correspondingly for Y,
o - S - A L 3 4y
z 03y W +2\y "Xy Y| =-0e %
BED BED
Both of the added expressions are equal to zero inasmuch as for
the streamline BED dy = (- v, *%9 dy -%§ dx = 0 so that equa-

tions (2) still hold,

Because

R )

equations (2) can be rewritten separating the terms in the following
manner:

2
-pcf dy+fj’\ ydy-—%[ gﬁ) dy-@—f;) dy - z%ifgiaxﬂ
BED BED BED
2 2
pf[ u-f)dx+# K%g) d.x-(%—fé) u-z%g%d_y].p g
BED BED BED

of of -

X3

]
[\V]
]

(5)
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The corresponding expressions for X; and Y; can be obtained
for fluid I, X;, and Y; belng obtained from X; and Y, by
- replacing p3, 72 by P, 71 -and the contour of integration BED
by the contour DCB. '

The similar terms of the expreasions for X> and Y, shall be
considered in pairs and by analogy the same terms for medium I,

The firs’, sums of the Iintegrals for the mediums I and II

Pof d1+pof dx
, DCB BED
pof d.v+pof dy
DCB BED

are equal to zero because the integrals of dx and 4y are taken
over the clomed contour DCBED,

]
o

and

"
O

The following terms of equations (5) will be considered; they
are correspondingly denoted by X;p, Xpgwp, Y, and Ypp vhere

L p=7 h]q y dy
DCB
X =7f y dy
2F 2
B

- ) (8)

-7N ‘Jq ¥y dx
DCB

- 72 b[\ ¥ dx
BED _J

T1p

s
0o
'3:1

]
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These expressions, in general, give the resistance forces and
the 1ift forces due to the hydrostatic pressure on the wetted con-
tours DCB and BED.

In computing the 1lift forces Y;p and Yop, it 1s necessary
to consider the following: :

The volumes u/\ydx for medium I are taken between the contour

DCB and the x-axis, which is the water-line of the motion. The
volumes lying below the water-line are taken with the minus sign
(fig. 4). For medium II, the rule of computation is the opposite,
the volumes lying above the x-axis (for example, the area DAD')
are negative,

Introducing the notation

Fl = area B'CDD'B! \W
FZ = area B'D'EBB! s
(7)
F3 = area D'DAD!
F4 = area BbB'B -j

for the forces YlF and YZF’ the following expressions are
obtained:

Tip =7y (Fy + F5 - Fy)

(8)

Yop = 72 (F3 + Fy - F3)

Finally, Xjp and Xyp &glive the projection on the x-axis of

the hydrostatic pressures of fluids I and II on the contours DCB
and BED. By denoting the projections of BED' and BED on the
y-axis by bOy and by ;or by hy and hy, the ordinates of the

points D and B 'can be obtained for X;p anmd Xpp. —
’ \.¥.~ P < L -~

.
S
- o
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2 2 ' .
n? - n, bo(2bg, = by)
1 0
xlF”g 71‘__7_7\.;‘71 1 : 7% y
2 2 (®)
-h - bo(2bs, - by)
Xop = 72 2g—t- = - 7p L 0F T

The force X;p 1s directed along the motion; the force Xop, which
is a reslstance, is directed opposite the motion.

In the case of the motion of a body in a homogeneous fluild
(71 = 72), equations (8) and (9) give the 1ift force equal to the

water displacement of the body and, as was to be expected, a resist-
ance equal to zero:

YF=Y1F+Y2F=7 . (F1+F2) = 7F
2 2 2 ? (10)
h h hy¢ -
Tp=Xp+Xop =7 ety 12 -0
/

In determining the forces acting on a wing moving through air,
the fluid 1s assumed to be welghtless and for the wing the hydro-
atatic 1ift force 1s negligibly small,

By returning to equations (5)

ar\2 ar\? 3 of A
x2N = --g BED [<§> d.y. - <§§> dy -2 & 3; dx
Y 0 (sz ix - (Bf)z dx - 2 O 3 4 (11)
2N T2 BEDEE ox &3‘ )
. Y2J=pvoj};m afd.x+afd5]=pvoj;m
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. The physical interpretation that must be given to the obtained
formulas in the limiting case where the densities of the fluids are
equal; that is, when the body moves through a homogensous fluid, will
be considered. As the contours of integration, for fluid I the con-
tour DIWHB shall be considered and for fluid II the contouwr BHVID.
The sum of these contours is equal to the circle IWHV of infinitely
large radius and they have two branches, DL and BH 1lying in the
surface of separation of the fluids, extemding to infinity. In the
limiting case of a homogeneous fluid (pl = 02), the surfaces DL
and BH are not surfaces of separation and there is no discon-
tinuity in velocity or demsity (fig. S).

The possibility of replacing the contours DCB and BED, respec-
tively, by DIWHB and BHVLD, will now be considered.

The palr of contours DCB + BHVID and BED + DIWHB give the
two closed contours DCBHVLD and BEDLWHB,

It shall now be proven that the expressions Xy and Yy taken

for the closed contours are equal to zero. For this proof, it 1s
sufficient to show that the expressions under the integral sign are
the total differentials of certain functions, that 1s,

2 ). 2

2 e &F)--- 2y

By expaniing these expressions, the following relations are
obtained:

]

of Bf>
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The-function f(xy) by hypothesis satisfies the Laplace equa-
tion; thus, 1t has been shown what was required so that the contours
DCB - and-- BED -are replaceable by the contours BHVLD and DLWHB,
respectively, It is merely necessary to change the sign before the
integral for the described direction of golng around the contour,

. The same substitution 1s permissible for the expression Yy
. because the function under the integral gives the circulation over
an element of the contour due to the added flow f(xy). The cir-
culation due to the added flow for any closed contour lying entirely
in the fluids I and IY is equal to zero for there are no vortices
within the fluid,

By integrating the terms Xy and Yy over the lines DL and
BH once for fluid I and a second time for fluid II, the sum zero
is obtained because the order of deacribing these contours of integ-
ration for the fluids I and II are opposite.

On integrating the same terms Xy and Yy over the circle
IWHV of infinitely large radius, an infinitely small magnitude of
the order 1/R results because af/ax and Of/dy, in the case
of motion of the body 1n a homogeneous fluid without a surface of
discontinuity, are of the order of smallness 1/R., Thus, the terms
Xy and YN are equal to zero for the motion of a body in a homoge-
neous fluid,

Further, the term Yy = dVO df taken for the fluid I over

the contour BHVLD and for fluld II over the contour DIWHB gives
as a result the expression

Yy = oVyd (12)

where J 1s the circulation of the fluild over any contour that
includes the contour of the moving body. It is not difficult to
see that the terms Y; taken over the 1ines DL and BH cancel,
for, in this case, the directions of passing eround the contours
of integration for the fluids I and IT are opposite.

In the general case of the motion of a body in a homogeneous,
‘weightless, and incompressible fluild, the result leads, as was to
be expected, to the theorem of N, E. Joukowsky on the 1lift of an
airfoll. '
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The physical meaning that must be given to the ocbtained for-
mulas for the motion of a solid body on the boundary of two fluid
mediums in the presence of the surface of discontinuity DL and HB
will now be investigated.

Congider the terms

XN xlN + XZN

YN YlN + YZN

where Xy and Yy are given by equations (11).

& It has been shown that in the case of the motlion of a body in

a homogeneous fluid, the velocities of the additional flow Of/dx
and Of/Jdy, having the order of smallness 1/R, give on integrating
over a contour of infinite radius zero for the terms Xy and Yy.

In the motion of a body on the surface of separation of two
heavy flulds, the picture is somewhat different. The wave surface
behind the moving body does not decrease the amplitudes of its
wvaves because the case of the motion of an ideal fluid is being
consldered. For this reason, the velocities of the additional flow,
even at an infinlte distance from the body but sufficiently near the
surface of separation, have a finite value and the terms Xy and
Yy do not give zero on integration.

It was Impossible to reduce the expressions Xy and Yy to a
shorter and simpler form, In what follows the term Xy shall be
denoted as the form drag. The form drag gives the projection on
the x-axls of the resultant hydrodynamic pressure of an ideal fluld
on the wetted contour without taking account of the hydrostatic

pressure.

The term Yy shall be considered in detail later in this report.

The last terms considered have the expression

YJ = YlJ + YZJ (13)
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where

DCB
f (14)

BED J

Physically, these expressions give the magnitude of the 1ift
force due to the clrculation of the fluild and are equal to ths cir-
culation about the wetted contour multiplied by the density of the
fluld and velocity of the flow at infinlity. The theorem of N, E.
Joukowsky, in a somewhat different form, has thus been obtained;
namely, in the motion of a body on the surface of separation of two
fluid mediuma of different density, the 1ift force due to the cir-
culation is equal to the sum of the two forces each of which is
determined as the product of the circulations over the wetted con-
tour multiplied by the density of the given fiuid and the flow
velocity at infinity,

In summarizing, the forces acting on a solid body moving half
submerged on the surface of separation of two heavy fluid mediums
I and IT with densities oy and pp, may be expressed as followa:

The total resistance force is equal to

X = X5 + Xop + X35 + Xo (15)
where
Xip = M by ; hy? A
n,? - hy?
Xof = - 72 5

dx] ) (16)
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The forces X;y and ZXpp glve the proJections on the x-axis -
of the hydrodynamic force on the wetted contour.

The forces X,y and Xoy are the form drags.

The total 1ift force is expressed by
Y = Yip + Yop + Y1y + Yoy + Y97 + Y3 (17)

where
Tip = 71 (Fy + T3 - Fy)

= 72 (Fz - F3 +F4)

1

N

L]
!

2 2 ;
P d d dF d > (18)
Yon ?2 f [i(%) ax - <£> dx - 2 gi" B% dy]
BED

DCB

BED D,

Forces YlF and YZF glve the volumes of the dlisplaced liquids
I and II, )
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Forces Yj;y amd Yoy @glve the 1lift forces due to the shape of
the vessel. '

~ Forces Y;5 and Yo5 -give'the 1ift forces due to the circula-
tion, .

The test results shall now be considered and the formulas
obtained shall be applied to the case of a flat half-submerged plate;
the results obtained at the Hamburg towing basin by Sottorf shall be
used.

The order of the component forces is determined in percentage
of the total 1ift force and reslstance. The curves of figures 6
and 7 glve this relation and refer to a flat plate towed with con-
stant velocity (V, = 6 m/sec) for a constant vertical load (Y = 18 kg)
and having a span at right angles to the direction of motion
(1 = 0.3 m)., TRe forces were computed only for water; the aerc-
dynamical forces were not taken into account,

Inspection of these curves permits the following conclusions
to be drawn:

1. Equation (17) gives for the 1ift forces three components:
the hydrostatic, the one due to circulation, and the one due to
form, The numerical computation given and figure 6 show that the
1ift force Yy, due to the form, is practically zero. (In the
computation the magnitude, Yy constituted no more than 3 percent
with aome fluctuations on either side due to the 1lnaccuracy of the
computation procedure,) In this case, the total 11ft force of a
solid body is equal to the sum of two forces: (1) the hydrostatic
force Yp and (2) the force due to the circulation Yz, which
gives the physical anslogy to the theorem of Joukoweky where the
total 1ift force for the sclid body moving in a homogenseous fluid
i1s equal to the sum of the circulation and the hydrostatic forces.
The hydrostatic force, due to its relative smallness for air, is
generally neglected,

An assumption based on a comparison of the results of tests
i1s expressed here, A strict proof that the 1lift force Yy 1s
equal to zero was not obtained. A deeper analysis of the essential
nature of the flow about a solid body at the surface of separation
will permit determining more fully the magnitude and the character
of the force Yy. It should be noted that equating the term Yy
to zero permitted deriving the analytical relation for certain
magnitudes characterizing the resistance of a moving plate, in
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particular, the resistance Xy. Comparison with the test results
given by Sottorf confirmed the correctness of the conclusion as to
the zero value of Yy, and the character of the test curves for
increasing span of the plate agrees with the obtained analytical
expression for infinite span.

2. The hydrostatic 1lift force, which for small angles of attack
assumes a considerable part of the load, rapidly drops with in-
creasing angle of attack practically reaching zero at the angle
of attack « = 10°.

3. The hydrodynamic 1ift force, due to the circulation, is
small at small angles of attack, rapidly increases with o, and
at 10° practically assumes the entire vertical load.

Both of these conclusions become physically understandable if
a disturbance in the flow arising from the change in the angle of
attack of the plate 1s considered, At the angle of attack a near
zero the disturbance In the flow is smell; the streamlines prac-
ticelly maintain their horizontal direction and the circulation due
tc the added flow of velocity potential f£(xy) over the wetted
contour is very small, At this instant, the entire load of the
plate can be and is taken up only by the hydrostatic 1lift forces.
With increasing angle of attack, the plate becomes more submerged
in the fluid, the circulation of the added flow increases, and
therefcre the circulation lift force increases. At the same time,
the value of the hydrostatic force relatlively decreases because the
hydrcstatic force normal to the plate glves, with increasing angle
of attack, a relatively smaller vertical component.

The resistance of the flat plate in moving half submerged in a .
fluld consists of the surface friction drag, the hydrostatic resist-
ance, and the form drag. Figure 7 shows relative change of these
forces, The induced drag due to the shed vortices, in the case of
a finite span of the plate, will not be considered because the coef-
ficients derived on the basis of test results already include the
effect of vortex formation on the planing flat plate.

The following conclusions, which are in full agreement with
these preceding results, may be derived:

4, The friction drag was computed by use of formulas that take
into account the velocity distribution on the surface of the plate
and the Reynolds mumber (see formulas that follow). At smell angles
of attack, the friction drag constitutes a large part of the total
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resistance and is of the order of 6 percent for the angle of attack
a = 10°, This drop is essentially explained by the decrease in the
woetted surface with increasing angle of gttack., In correspondence

with the results of tests, the turbulent state of the surface fric-
tion was assumed here. '

.5. The hydrostatic resistance has in general, a small value,
At a = 0° the value is practically zero, it 1ncreases reaching a
maximm at a = 2.5° and then drops almost to zero at a = 10°.
This effect is understandable if the fact that the rise of the
fluid (to point D, fig. 4) decreases the magnitude of the hydro-
static preasure 19 considered,

6. The hydrodynamic resistance Xy, termed the "form drag,"
is zero at o = 0° and increases with a reaching 93 percent of
the total resistance of the plate at a = 10°. The explanation of
this phenomenon lies in the fact, that with increasing angle of
attack there is an increase of that, which in aerodynamics is
termed the "frontal area" of the plate, that is, the proJjection
of the wetted surface, on a plate perpendicular to the direction
of motion. At large angles of attack, there is a greater decelera-
tion of the flow, hence, an increase in resistance Xy.

The present work may be viewed as an attempt to investigate
hydrodynamically the nature of the phencmenon of the motion of a
80114 body on the surface of separation of two fluid mediums of
different densities., The consideration of the general case of the
motion of a solid body is now concluded. In the next section,
the general formulas obtained are applied to the motion of a flat
plate and on the basia of experimental data test curves are pre-
sented that permit the computation of the planing plate.

2. MOTION,OF HALF-SUEMERGED FLAT PLATE
ON SURFACE OF HEAVY FLUID

In the motion of a seaplane or flying boat on the surface of
water, after rise on the step, the hydrodynamic 1lift forces assume
the larger part of the total welght and only a very small part of
the total weight of the structure 1s supported by the hydrostatic
force (force of water displacement),

. At the velocity of motion of a planing surface equal to zero,
the entire atructure ‘is balanced by the hydrostatic 1ift forces.

P
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Thereafter with increasing velocity (fig. 8), due to the hydrodynamic
forces that arise, the planing surface begins gradually to rise out
of the water in euch a manner that the sum of the hydrodynamic 1ift
forces and the water displacement forces 1s at all times equal to.

the welght of the float. At the velocity V =7V;, it is assumed
that the bottom has come out on the step, that is, the initial weight
is taken up by the hydrodynamic 1ift forces, and that the water dis-
Placement 1s not large and can be neglected, Actually, the water
displacement of the body drops with the velocity and would become
zero at V = oo,

The contours of the bottom lines of planing bottoms in the
immediate nelighborhood of the step closely approximate those of a
flat plate. This fact permits the supporting part of the bottonm
of a seaplane, after coming out on the step, to be considered as a
flat plate moving half submerged at the angle of attack a with the
horizontal because the character of the motion is sufficiently like
that of a two-dimensional flow.

In the case of the motion of a two-step body, the rear step
meets the surface of the water already disturbed by the forward step
and therefore the angle of attack of the rear step will not be equal
t0 the angle between the line of the bottom and the water line of
the motion., The choice of the optimum angle of attack at the rear
step should be made on the basis of a special analysis of the phen-
omenon of the flow about the bottom at the rear step. In the given
case, this report is restricted to the consideration of the flow

about the bottom at the forward step.

Let the flat plate of infinite width, submerged to the length
by, move with veloclty V, over the water surface at the angle of
attack o« to the horizontal. As is shown by experiment, the wetting
of the surface of the moving plate starts not at point E (fig. 9),
which is determined by the intersection of the horizontal with the
plate, but somewhat higher, namely, at point D, The ratio b = BD
to by = BE 1is a certain function of the angle of attack, the vel-
ocity of motion and the depth of submergence of the plate.

The present discussion considers the coordinate points as known
and, therefore, the true wetted area S = Ib 1s known. At the end
of this paper it will be shown how the value of the ratio b/
may be approximately determined.

Application of equations (15) and (17), derived in the general
cage for the solid body of arbltrary shape moving on the surface of
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separation of two fluids, will now be made to the motion of the
partly submerged flat plate. In applying the obtained results to
the particular problem of constructing the graph of the 1ift and
drag forces of a flying boat hull or seaplane float during take-off
on water, this paper 1s restricted to the determination of the forces
acting on the plate 'due only to the water and not the aerodynamic
forces, which in view of the variety of shapes of the above water
parts may be mcre reliably obtained from special wind-tunnel tests
on models., Thus, in all the following equations p; and 7y will
" not appear amd pp and 73, now denoted by p amd 'y, will cor-
respond to. the mass and weight density of the water, '

The kinematic condition for the line of flow LDEBH coinciding
with the part DEB of the plate (fig. 9) may be written

%:%:tga:% (19)

where o denotes the angle of attack of the plate, In what follows -
a new magnitude €, which shall be denoted as the mean relative
retardation of the flow over the part DEB, will be introduced.
Thus, by denoting the total velocity of the flow at the streamline

by V and the flow velocity at Infinity by Vb, the retardation
will equal the difference:

AV = V5 -V

and the mean relative retardation €, the arithmetic mean of the
magnitude AV/V, over the contour DEB is

e = [AY) - AV db ' (20)
cp )

BED
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By applying equations (15) and (17) to the case of the motion of a
partly submerged plate, the hydrostatic 1ift and drag forces,
expressed by the following formulas, are obtained:

- 0.5 7 sin? QE (2b, - t@

0.25 7 sin 2ab (2bg - b J

Xp
(21)

I

where the forces are referred to unit length of the plate in the
direction of the span,

In order to express the terms Xy, Yy, and Y; as a func-
tion of the ratio €, +the expressions of the magnitudes under the
integral signs in equations (15) and (17) shall be written as func-
tions of €. Because the contour BED is a streamline (fig. 10),
the following relations may be written.

%:VO-VGOSCL=-VOE'.-(l-e)cOBG]

of '
6§=-Vsina.--vo(l-€) sin a

By substituting the expressions obtained for Of/Ox and Of/dy
in equations (15) and (17) and after some transformations, the
following equations are obtalned:

Xy = -~ € (2 - €) sina.-%bvoz w

Yy = E(z-e) cosa-z(cosu,+€-11‘ %bvoz> (22)
- - o z

Y; =2 (cos o+ € 1)§bv0




NACA T 1246 ' ' 21

In these equations, and also in all equations given hereafter,
a certain assumption is made; namely, the integral of the squares of
- theAratio.»AV/Vo were substituted by the square of the mean ratic

AV/V,, that 1s,
2 2
Vo/ ® Vo/ep

BED

Actually, if AV/Vy = € + A€, substitution in the integral
glves

Vo
BED BED

2 ab 4 2¢ ae 4b ae)? db
€ V[ﬁ = + ‘/1 € 3 + (ae)” S
BED BED BED .

The first integral on the right gives 62; the second integral
glves zero, because by definition \j"Ae db/b = 0, amd finslly
(ae)2 db/b gives a positive quantity, which, however, is so

small that it may be neglected, Thus, for coefficients of the

order of unity, this quantity in the most unfavorable case will
amount to several thousandths and therefore with a sufficient degree
of accuracy the following equation may be written:

a2 ab _ [aV\e _ .2 (23)
Aty £2.- (&%) -=¢
Vo) ®  \Vo). |

BED P

2
(H) ﬂ = (€ + A€)2 g't.)l =

“Thus, for a given angle of attack and a glven wetted area, the
1lift force from the circulation Yy and the forces YN and Xy
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can be computed, if the mean relative retardation € for given
parameters of the motion is known.

The dependence of the ratio € on the angle of attack a and
the wetted area will be established later when the experimental data
obtained by Sottorf at the Hamburg towing basin are considered. For
the present, the derivation of further formulas, which are required
for the practical computation of the problem of a planing bottom,
shall be regarded. ’

Up to now, the phenomenon in an ideal fluld, without taking
account of the friction, has been considered. In the case of the
motion of a solid body (plate) on the boundary of real (viscous)
flulds, it 1s neceasary to add to the forces already determined the
force due to the friction at the surface of the body. The formulas
for the friction force of a planing flat plate will be derived.
Inveatigations on the surface friction have shown that the friction
on an element of surface of area dS 1is expressed in the following
form

dR = Cp ‘S v2as (24)

where Cg 1is a coefflcient, which depends on the Reynolds number,
and V 1is the flow velocity at a given point of the wetted area.

The dependence of the coefficient of friction on the Reynolds
number, according to the latest investigations of the friction of
flat plates, will vary with the flow regime (rig. 11, reference 1).

For smooth polished. plates for flow regimes with Reynolds
number Re < 5-105, the dependence of Cy on Re has the follow-

ing form (curve b):

For the motion of the same plate with Reynolds mumber
Re > 5-105, the laminar flow, with increasing Reynolds
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number, gradually goes over into turbulent flow and the dspendence
of Cp on Re 1is expressed by the formula of Prandtl (curve c):

Cp = 0.074 _ 1700 (26)
g R
§JR9 °

“For a plate with blunt leading edges or with roughness that
produces turbulence, the test data give the dependence of Cg on
Re 1n the following form (curve a):

0.072 (27)
§JRe

Ce =

: Integrating equation (24) over S and replacing V by
Vo - AV, the following is obtained for the plate of wetted area
S = Zb:

2 2
R=Cp (1-c¢€) gsvo (28)

The friction R 1s tangent to the plate so that its compo-
nents along the axes of coordinates will be

Xg = - Cp (1 - €)% cos u-g SVO2

(29)

Tg = - C¢ (1 - €)? sin a £ V2

The coefficient (1 - e)2 cos a gives the correction in the
magnitude of the friction drag takling into account the inclination
of the plate to the flow, or In the more general case the curva-
ture.

The force YR shall be neglected in what follows as it is
very small in comparison with the other components that determine
the total 1ift force of the planing bottom,
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After adding all the forces exerted on area S = 1b by the
vater, it may be sald that the resistance of the plate is composed
of the hydrostatic resistance Xp, the form drag Xy, and the
friction drag IXp:

X =Xp + Xy + Xy (30)
and for the components the following expressions are obtained:

5

Xp = - 0.5 7 sin? & (2by - b) 8

&
I

2
=-¢€(2-¢) sin a.g SV, ? (31)

- Ce (1 - €)% cos o« sv42

Il
&0
L}

J

In deriving the resistance forces and in passing from two-
dimensional to three-dimensional flow, that is, to a plate of finite
span 1!, the induced drag due to the vortices shed at the surface
of the plate, was not Introduced.

This drag could be introduced, if by analogy with the airfoil
theory, mT-shaped vortlces are assumed and if the Biot-Savart
theorem is considered as applicable without any changes to the
pressnt case of motion on the surface separating two fluld mediums.

This assumptlion may be considered superfluous, because in
order that the formulas developed here may be practically applied
it 18 necessary to know the value of the factor € for the given
agpect ratio of the-plate and the angle of attack. The angle of
attack is obtained on the baslis of test data and therefore already
takes into account the induced drag, It would be incorrect to
introduce a second induced drag.,

The 11ft force of a planing plate is expressed as the sum of

the hydrostatic 1ift Yp, the hydrodynamic 1lift due to form Iy,
and the 1ift due to the circulation Yj:
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where the components are given by the equations

. YN=[e(2-e)coeu.-z(cosa.+e-1] SVO2

Yng(cosa.+e-1)-§SV02

In the following discussion, use will be

Yp = 0.25 7 8in 2a ’(2’156 -b) S

A

~

(33)

y

made of the derived

formulas in a somewhat different form introducing the nond.imensional

coefficients Cy, Cr, anmd Cy where

Cx =€ (2 ~¢€) slna W

Cgr = Cp (1 - €)% cos a P (34)
Cy =€ (2 -¢€)cosa
Thus,
Xy = Cx § SVo° )
X = Cg 3 SV L (35)

YN+YJ=cy§sv02J

3. EVALUATION OF EXPERIMENTAT, DATA

OF SOTTORF

The formulas derived herein permit the determination of the

1ift and the drag of a partly submerged plate

1f € 1is found and

b/bg X as functions of the parameters of motion as the velocity,
® o

£ attack and aspect ratio.
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The relation between the ratio € and the velocity, the angle
of attack a, and the aspect ratio A of the wetted area will now
be determined. In order to solve this problem theoretically, there
is required the analytical determination of the flow, in other wordsd,
a knowledge of the complex potential function w =@ + Vi, In
solving this problem, great mathematical difficulties are encoun-
tered, Because the problem of giving formulas sulitable for practical
use ls present and mathematical rigor of this analysis 1s not pre-
tended, use shall be made of the tests of Sottorf (reference 2) on
planing plates for the determination of the dependence ¢of € on
a, Vo, and A,

The tests of Sottorf at the present are the only published
experimental data that permit analyzing the phenomenon of the
planing of a plate with sufficient completeness. It should be
remarked that the tests give a large number of test points for
small aspect ratios only. For 2 <A <S5, the number of test
peints is very small, and in order to obtain the required curves
use must be made of the method of interpolation.

For A >5, there are no test data at all but it was possible
to obtain theoretically the fundamental relations for A =o and
then by extrapolating the test curves it was assumed possible to
prolong them to the aspect ratio A = 10.

The tests of Sottorf were conducted at the Hamburg towing basin
and were made on a plate of constant span (1 = 300 mm)., For con-
stant 1ift forces, varying from 4 to 45.2 kilograms, the plate was
towed, over a range of velocities from 4 to 9 meters per second, at
various angle of attack. The results of the test give for each
towing trial the following experimental values:

Y 11ft force of plate, (kg)
X total resistance of plate, (kg)
o angle of attack, (deg)
Vo towing velocity, (m/sec)
& hovre .
wetted widdh in the state of rest, (mm)
hord
b wetted wASEh in motion, (mm)

M moment with respect to lower edge of plate, (kg/m)
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On the basis of the tests of Sottorf, the derived formulas per-
mit obtaining the magnitude € 1n two ways: either operating with

.. equation (30) and the test data on the resistance to the motion, or

using the same test date and equation (32) referring only to the 1ift
forces. In the total resistance to the: motion, there enters the
component of the frictional resistance on the x—axis. In computing
the resistances the probability of error is not excluded because the
frictional resistance contains the coefficient Cp, the formulas

for which cannot be considered as sufficlently correct for all regimes
of the motion. .

The factor € can be determined with a greater degree of
accuracy from the data and formulas for 1ift forces. In this case,
the component due to the friction is very small so that the errors
in the determination of € will be consideradbly less than in the
first case,

The obtalned graphs are not considered final and to supplement
and correct them it is necessary to turn to the first case as 1s per-
mitted by the accumulated experimental data on the planing plate.

Thus, € shall be determined from the equation of the 1lift
forces (32)

With the accuracy inherent to all test results, the magnitude
of the hydrostatic 1ift forces for each towing test 1s determined by

Yp = 0.25 7 8in 2a (Zbo -b)b . 0.3

vhere for 7y +the value 1000 kilograms per cubic meter was chosen.

Then, subtracting from the total 1ift force Y measured in the
test the lift YF the difference is cbtained, which on the basis
of equation (32) 1s connected with the required magnitude € by the
following relation:

2 (Y - Yp)
0.3 proz cos o

5(2‘€)=

. . By solving this equation for ¢, the value of € may be
obtained for each towing trial. Thus, for example, for V = 9.85
miFiimeters per second and the load Y = 22,6 kilograms the results
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shown in figure 12 were obtained., A similar evaluation of all the
test data of Sottorf gives a series similar to the curves of € as

a function of A and o for the velocities Vo and load Y. From
these curves, as & general rule, it may be concluded that for a given
velocity V and vertical load Y on a plate of constant span l,

the ratio € 1increases with increasing angle of attack and the wetted
agpect ratio A = 1/b.

From these curves, the value of . € as a function of the angle
of attack can be found for any constant value of the aspect ratio
A = /b, The curves of figure 13 give the change of € with the
angle of attack a for a constant value of the wetted aspect ratlo,

The change In € as a functlion of the aspect ratio A for
constant angles of attack a 1s shown in figure 14,

The numerical values for these curves are given in table 1,

The avallable experimental data permit the following conclusions:
The value of € does not depend on the velocity of the planing plate
and is a function of the angle of attack a and the wetted aspect

ratio A. .

For a given A, the increase of € with the angle of attack
a 1is represented by a straight line. For a constant angle of attack
¢ increases with increasing A. The straight line of € against «o
with increase in the parameter A (fig. 13) approaches a certain
straight line that, it may be assumed, corresponds to an infinitely
large aspect ratio (A = ®)., In the previous section, it was shown
that by computation the obtained formulas give, for the partly sub-
merged plate, a 11ft force Yy practically equal to zero. If this
assumption, which has not been mathematically proved, is made and,

the coefficlent of § SVo? in the expression for Yy (equations (33)

are equated to zero, the following relation between € and the angle
of attack i1s obtained.

€e(2-¢ cosa-2(cosa+ €-1) =0

from which is obtained

o

i cos o

e=f(l-cosa);ztgg;a (36)
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‘The obtained expression glves the relation between € and the
angle of attack for infinite span,

- The curve of € plotted against « according to equation (36)
is given in figure 14, The statement that the straight lines of €
againgt a, with increasing A, approach asymptotically a certain
atraight- line corresponding to A o 18 confirmed by the obtained
analytical relation in equation (36). It should be noted that this
expregslion was obtalned independently of any experimental data and
the values of the other forces obtained on its basis for A == do
not contradict the physical phenomena, moreover, they confirm the
asymptotic approach of the experimental curves to the 1imiting values
corresponding to ‘A =

If the dependence of € on o and o is known, for any given
angle of attack and aspect ratio the value of the coefficients Cy
Cy, and CR/Cf can be determined by use of equation (34) and there—
fore, the drag and the 1ift of a plate planing at angle of attack a
and aspect ratlio A can be computed,

The curves of the coefficients Cy, Cy, and Cg/Ce plotted
against A for various angles of attack a are glven in figures 15
to 17. There ere also given the values of these coefficlents for
an infinitely large aspect ratio, the value of € being determined
from equation (386).

In addition to € the magnitude = b/b must be known for
complete hydrodynamlc computation of the planing plate, The knowledge
of the magnitude X makes possible the computation of the hydro-
static forces Xp and Yp. However, the computation shows that the
values of Xp and Yp, for velocities corresponding to rise on the
step and greater, are negligibly small in comparison with the remain-
ing acting forces. For this reason, within the range of velocities
congldered, it may be assumed that these forces are absent.

The value X evidently depends on the velocity, the angle of
attack, and the aspect ratio. An attempt to obtein this relation on
the basis of experimental data did not give positive results. The
determination of this relation will be returned to later and in
order not to defer the discussiocn it is reccmmended that the planing
angles of o = 3 - 4© be used to assume the velue X = 1,15, which
of course introduces a certain inaccuracy in the hydrodynamic ccmpu-
tation at velocities up to the rise on the step. The errors introduced
by this approximaticn, however, rapldly drop and at the rise on the

" step entirely vanish,
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The determination of the experimental relation between the
center of pressure and the parameters that determine the motion of
the plate are now considered. Here, as before, use is made of the
tests of Sottorf. The followling results are obtained on the basis
of an analysls of these tests.

The forces acting on the partly submerged plate may be divided,
as regards the determination of thelr moments, into the following
three kinds:

(1) the friction forces, directed tangentially to the plate
whose moment about the lower wetted edge is zero;

(2) the hydrostatic pressure forces, perpendicular to the plate,
whoge value over an element of the plate adb varies linearly. The
center of pressure of the sum of the hydrostatic forces ls easily
determined and their mcment about the lcwer wetted edge of the plate

is

3bg - 2b

Mp = y1b2 gin a (37)

(3) the force of the hydrodynamic pressure of the fluld on the
plate. These forces, being perpendicular to the plate, give about
the lower vwetted edge the moment My, which is expressed by the
follcwing relation:

v.2
My = pdb-b:p—g—l € (2 - €) bdb (38)

This expression was obtalned In the following manner., The
hydrodynamic force acting on element db will be equal to:

v.2
dP:p_g_e(z-e)db=12.2(v02-v2)db

Ite moment dMy about the lower wetted edge is glven by
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Vo2 '
d.MN.-_p—g_ € (2 - €) bab

By Integrating this expression between the limits 0 to b,
equation (38) is obtained for a plate of width 1.

It is not difficult to see that the equation-fof the moment of
the hydrodynamic forces about ‘the lower edge of the plate may be
briefly expressed in the following form:

VA2 : '
My = o _g_ b2 Cy (39)
where
b
1l

Cy = = € (2 - €) bdb 4

M= ( ) (40)
0

It is obvious that the magnitude Cy 1s a function only of €. This
fact is of essential importance in the procedure of evaluating the
data of Sottorf, which follows.

From the measured moment of all the forces acting on the planing
plate, the moment (computed by means of equation (37)) due to the
hydrostatic pressure is subtracted. By dividing the remainder by

2
b V% 1b2, Cy may be obtained, The coefficlents Cy computed

b

in this manner for all the test points of Sottorf, determine a cer-
tain curve of Cy against €, when graphically presented.

This curve, which with sufficient accuracy 1is a straight line
is shown in figure 18, The straight line, which 1s computed by the
method of least squares, gives the slope k = 1.58.

Thus, the relation between the moment coefficient Cy of the
hydrodynamic forces and the ratioc € may be expressed by the follow-
ing equation:_

CM = k€ = 1,58 €
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The moment of all the forces acting on the plate about its lower.
wetted edge may be written in the following form:

, - 2
M=Mp + My = 7% 8in o ibigﬁ’. + kep zg.. b2 (42)

If for a gilven velocity and given load the angle of attack of
the plate and the wetted aspect ratlo are known, the value of € can
be found from the curve of € against o amd A, From the obtained
equatlon or from figure 18, the value of the moment coefficient can
be found., If required, the center of pressure of the hydrodynmamic
forces can then be cbtained, By adding the moment of the hydrostatic
forces obtalned from equation (37) the moment of all the forces act-
ing on the plate can alsc be obtained

: The wetted agpect ratio that is required here mey be determined
in the following manner, From the data the load coefficlent Cp 1s

obtained

Cp = L = -3 43
S (23)
2

This coefficient characterizes the degree of loading cf the
plate, On the curve cf figure 19 for a given angle of attack and
constant Cg, the aspect ratio A, at which the given plate will
plane for the velocity V, width 1, and load Y may be found.

In the following discussion, the ratio of the 1ift force of the
plate to the total resistance as the planing efficlency of the plate
will be

)
]
Ml

The value of the coefficient k for the case of motion of a
plate of finite aspect ratio in a real visccus fluld will now be
considered in more detail., The magnitude 1/k = u, the reciprocal
of the efficiency, will now be analyzed.
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The derived equations permit writing the following expression
for u: .

Xp + Xp + X Ip + X X
n = _x_ - i) N R - F N + R (44)
Y YF + YN + YJ YF + YN + YJ YF + YN + YJ

The right side of the equation, is expressed by two terme, which
permits considering each term separately. The first ccmponent term
determines the efficliency of the plate of any span for motion in an
ideal nonviscous fluid, This magnitude 18 exactly equal to tan a
because in an ideal fluld the plate is acted on only by normal
forces:

Ip + X
) N = tg a
Yp + ¥y + ¥g

The seccnd term

xR

glves the correction due to the viscosity and, hence, the existence
of surface friction. First of all, the term Yp in the denominator
of the expression entering as a 1ift force due to the hydrodynamic
pressure on the wetted plate is rejected because the term Yp rapidly
decreases with increasing velocity and may be already practically
neglected starting at velocities equal to 75 percent of the velocity
in rising on the step. By neglecting this term, that is ccnsidering
the plate in the state of planing where its water dilasplacement is
negligible, the values for Xgr, Yy, and Yy determined by equa-
tions (35) may be substituted. Then dividing by 8 SV02 cos a
there results

IR Ce (1 - €)? Ce o
In+Y; - e(2-¢€¢) "e(2-¢)  °F
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Thus, it 1s given by

Cf (l - €)

- (49)

=tga.+

The variation of u with the angle of attack and aspect ratio
of the plate will now be considered. The family of curves (fig. 20)
gives the relations obtained by equation (45). The friction coef-
ficient Cp, which as been previously shown, depends on the Reynolds
number in the general case, here assumes a constant value equal to
0.003, which corresponds in the case of the turbulent regime to the
Reynolds number Re = 9 . 105. The change of the magnitude p with
the Reynolds number will subsequently be considered. Inspection of
the curves for Cp = 0.003 permits drawing the following conclusions:

For a constant coefficient of friction and a constant aspect
ratio, the value of u has a sharply defined minimum for a certain
angle of attack,

For relatively small deviations from the optimum angle, the
impairment of the planing efficiency of the plate, that 1is the
increase in the magnitude u, will be considerable.

For the friction coefficient Cg = 0.003, the most favorable
angle of attack lies in the range of 4° to 2° With increasing
aspect ratio, the most favorable angle of attack decreases from
%at A = 0.5 to20at A=

The largest value of the planing efflciency is attained for
an infinitely large aspect ratio (A = ). It may be assumed,
however, that the efficiency for aspect ratio A = 10 already
differs only slightly from the value of the efficiency at A =w.
Thus, for A = 10, u = 0.078; whereas for AN=o», u=0,0755,
that is for the aspect ratio A = 10 the efficiency is less than
that for A = ® by only 3 percent,

Because the analytical part of this paper does not fully take
into account all the factors that impair the planing efficlency of
the plate, 1t may be expected that an aspect ratio of 7:8 will be
the most favorable. Beyond this limiting value there may be
expected not an improvement, but an impairment of the planing effi-
ciency as a result of separation of the flow and the turbulence,

which have not been considered here,
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The computation of the resistance (fig. 23) with increasing
velocity for plates planing at constant load Y = 18 kilograms and
constant angle of attack a = 4° sgliows that even with account taken
only of the surface friction there 1s for a certain aspect ratio a
limiting optimum value of the efficiency k and further increase
in the asdpect ratio impairs the efficlency (fig. 21). Thus, in the
cage of the turbulent flow this value is A = 7.5 and in the case
of transition to the turbulent.flow the optimum value is A = 9.7.

The reason for the impairment of the planing efficiency after
reaching certain values of A .is to be found in the increasing
resistance due to the surface friction for a constant value of the
hydrodynamic resistance Xyj = Y tan a. In the process of planing,
the frictional resistance is influenced by the following factors.
With Iincreasing velocity, the Reynolds number drops and approaches
a constant value that for a turbulent regime gives an increase in
the coefficient of friction (a factor that increases the frictional
resistance). With increasing velocity there is a decrease in the
friction surface area (a factor that decreases the frictional resist-
ance). Because the frictional resistance is proportional to the
square of the velocity, the lncrease in the friction due to the
increase in velocity is so large that 1t compensates the drop in
the resistance due to the decreased friction area and together with
the added resistance due to the change of the Reynolds number gives
as a final result an increase in the friction.

The deperndence of p on the angle of attack and the aspect
ratio for Cp = 0.003 are shown in figure 20. Now it will be shown
how the optimum values of the angle of attack and the values of
change as Cp changes.

The minimum values of p as functions of the optimum angle of
attack for three different coefficients of friction Cg¢ equal to
0.0025, 0.003, and 0.004 are plotted in figure 22.

The values of the optimum angle and the values of k, the
officiency of the plate, are laid off on the ordinate. Two groups
of curves determine the change in the optimum angle of attack and
efficiency k for the three values of Cg, 0.0025, 0.003, and
0.004. The dotted curves refer to the same aspect ratio. On the
abscigsa are laid off the values of the load coefficients denoted by

; -~

c

Cy ¥
Cp = T b 12y2
F
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Inspection of these curves permits drawing the following con-
clusions:

With increasing Reynolds number, which in the case of turbulent
motion always corresponds to a decrease 1n the friction coefficient
Ce, the planing efficiency of the plate improves, At the same time
there is also a decrease in the optimum angle of attack.

For sufficiently small load coefficients (which correspond to
aspect ratios A . from 7 to 10), the planing efficiency differs
little from the value for infinite span. In accordance with what
has been sald, for load coefficients Cg < 0,01 there must be
expected not an increase in the efficiency but a decrease due to
the hydrodynamic resistance, which was not taken into account, as
well as the frictional resistance.

The change 1n the separate resistance terms the sum of which
is the total resistance of the plate, willl now be consldered. The
computation for a plate of width 1 = 0.3 meter has here been carried
out assuming the angle of attack constant and equal to 4° and choosing
the velocitles over the range O to 22 meters per second. The vertical
load was taken constant and equal to 18 kilograms, The most accurate
results, as has been shown, are to be expected at velocities of pure
planing. Here the curves shown in figure 23 are obtained. The
hydrostatic resistance rapidly increases from zero to the maximum
value that corresponds to the velocity V = 2 meters per second,
then rapidly drops and at V = 10 meters per second 1is practically
equal to zero, that is, i1t may be assumed that for velocities above
V = 10 meters per second pure planing occurs.

The form drag, increasing from zero, reaches at the velocity
= 10 meters per second its maximum value Xy = 18 tan 4° and
practically remains constant with further increase in velocity.

In computing the resistance due to the surface friction, two
regimes are assumed. The first regime 1s the gradual transition of
the flow from laminar to turbulent and it corresponds to the curve
Xgr,e The second regime is that of complete turbulent flow, this
case correspords to the curve Xpp. As was to have been expected,
the turbulent regime gives an increased surface friction., The
general conclusion with regard to the frictional resistance is the
following: At a certain velocity (V = 6 m/sec) the frictional
resistance, starting from zéro, reaches a maximum value, then drops,
having minimums at V = 15 and 17.5 meteras per second for the
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laminar and turbulent states, respectively, and with further increase
in velocity slowly increases., In analyzing the change in the planing
efficiency, the reasons for this phenomenon have been considered.

The total curve of the resistance in the case of the turbulent
regime gives the following character of the flow: At the velocity
V = 6 meters per second, which is termed the critical velocity, the
curve has a maximum resistance. Then at V = 15 meters per second
the curve has a minimum, thereafter it slowly increases due to the
increasing frictional resistance. An analogous character of the
flow is also possessed by the resistance curve for the case of transi-
tion from laminar to turbulent flow.

In conclusion, the results of computation with the formulas and
curves given in this paper are compared with the data obtained directly
from tests, This comparison was made for three cases, The first two
refer to the teat data of Sottorf on a plate with 1 = 0.3 meter. In
the first case the plate,. being loaded by a vertical force A equal
to 8 kilograms, was towed with velocity V equal to 4 meters per
second; in the second case, the same plate had the load A = 18
kilograms and the corresponding velocity was V = 6 meters per second.
The third case refers to the towing of a seaplane model, The computed
andl experimental curves obtained for the plate permit drawing the
following conclusions:

The results obtained by computation almost coincide with the
towing test results (fig. 24). For the same plate towed at two dif-
ferent velocitles and loads, there are two corresponding friction
regimes; namely, at V = 4 meters per second and A = 8 kilograms
there is a transition from laminar to turbulent flow (equation (26));
whereas at V = 6 meters per second and A = 18 kilograms the fric-
tion has a clearly marked turbulent character,

Figure 25 shows the agreement of the theoretical and towing
test results for the seaplans model,

The curve Xp glves the total resistance of the model computed
on the assumption of a flat bottom, the angle of attack of the model
being taken from the arithmetic mean of the angles with the water line.
The curves IXx give the same resistance corrected by approximate
formulas for the keel of the model.
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Notwithstanding the fact that the plate 1s only a rough approx-
imation to the bottom of the model, the agreement between the theory
and experiment 1s considered to be very satisfactory,

Translated by S. Relss
National Advisory Committee
for Aeronautics.

REFERENCES

1. Prandtl, L., and TietJjens, O. G.: Applied Hydro- and Aero-
mechanics. McGraw-Hill Book Co., Inc., 1934, p. 291.

2. Sottorf, W,: Experiments with Planing Surfaces. NACA ™ 661,
1932,



NACA TM 1246

Table 1., - Values of mean relative retardation ¢ as function of angle
of attack a and aspect ratio A.

N \" 1 2 3 4 5 6 7 8 9 10
05 05 | 105 160 | 210 | 260 | 315| 365| 415! 470| 520
1 080 | 155 | 225 | 300 | 39 | 450 ( 540 610! 690/ 7560
15 100 | 195 | 280 | 380 | 485 | 575| 685| 7.85| 880| 975
2 115 | 230 | 330 | 440 [ 500 | 670| 795| 910 1025 11.30
3 140 | 275 | 400 [ 540 | 670 | 813 | 945 1080 | 1215 1310
4 150 f 300 | 450 [ 600 { 745 | 9.00 | 1050 | 1200 | 1350 | 1495
5 160 | 320 | 480 | 635 | 7.95 | 9.60| 1115 12,75 | 14.40 | 16.00
6 165 | 3.30 | 495 | 660 | 825 990 | 11.55| 1320 | 1485 | 1650
7 1695 | 336 | 504 | 672 | 840 | 1008 | 1175 | 1343 | 1512 | 1680
8 170 | 339 | 509 [ 678 | 847 | 107 | 11.87 | 1356 | 1525 | 1695
9 1705 | 341 | 511 | 682 | 852 | 1023 | 1194 | 1364 | 1534 | 17.05

10 171 | 342 | 513 | 684 | 855 | 1026 | 11.97 | 13.70 | 1541 | 17.10
o 1735 | 349 | 523 | 699 | 875 | 1050 | 1225 | 1400 | 1580 | 17.60

Table 2, Values of p as function of a and A for Cp = 0,003
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0.2820| 01970 0.1650| 0,1600 | 0.1670 | 0.1785 | 0.1930| 0.2040 | 0.2200| 0.2340
0.1950 | 0.1430( 0,1305( 0,1334| 0,1445{ 0,1615| 0.1725| 0.1920{ 0,2090 | 0.2260
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Table 3. Values of p as function of o and A\ for Cp = 0.004
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Table 4. Values of p as function of « and A for Cp = 0.0025
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Table 5. Optimum

0.1480
0.1200
0.1030
0,0970

0900

0.0851
0.0820
0800

0.0785
0.0770
0,0760
0,0743
0.0725

0.1700
0.1550
0.1460
0.1400
0.135Q
0.1300
0.1270
0.1250
0,1235
0, 220
0.1210
0.1190
0.1130

0.1850
0.1710
0.1640
0.1590
0.1530
0,1480
0.1450
0.1430
0,1405
0.1390
0.1380
0.1370
0.1300

0.2010( 0.2170
0.1870| 0.2060
0.1810 0.1990
0.1760| 0.1940
0,1700} 0.1890
0.1660 | 0.1850
0.1630| 0.1820
0.1610| 01790
0,1590| 0,1770
0.1580( 0,1750
0.1560 | 0.1740
0.1540 | 0,1720
0.1475 | 0.1640

0.2310

02170
0,2120
0.2080
0.2030
0.2000
0.1980
0.1950
0.1925
0.1910
0.1900
0,1810

values of k and o as functions of the friction
coefficlent Cf

Teble 6. Values

of form

and A

C,=0,0025 Cr=0,003 Cr =00
A

C, » C' C!

k 2 y [ ] 1 T k a T
0.5 680! 3°31' 00715 6.30 3°49' 0.078% 6.00 4°03' 0.0870
1 845 3°0l 0.0445 7.50 3°21’ 0.0490 6.6 3°42 0.0560
1.5 935, 2°46' 0,030 8,75 3°0%' 0.0380 7.65 3°25° 0,0435
2 1045 2°33' 0.0280 9.70 2°49 0.0295 8,40 2 0.0359
3 11451 2°2% 00220 10.85 2238’ 0.0215 8.40 2°57' 0.0260
4 1230 2°%’ 0.0170 1145 2°33 0.0175 9.85 2¢52 0.0210
5 1290 2047 00140 11,95 200’ 0.0145 1045 2°46' 0.0170
6 1340 2°15 0.0120 12,40 2°27! 0,0120 10,75 2°43' 0.0145
7 13.70( 2°1% 0,0110 12,60 2°26' 00110 .00 2041’ 00125
8 1390] 2°1% 0,0100 12.75 2°25' 001050 11.25 2°40' 00110
9 14.10] 2 14 0.0099 12,85 2°25' 0.0100 11.35 2°3¢9 0.0100
10 1430( 2°14 0.0095 1290 202/ 0.0095 11,60 2938’ 0.0095

drag coefficlent Cy as function of a

10
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0602 |0,0045
00042 | 0.0066
0.0054 | 0,0083
0.0062 10,0098
0.0074 {0,0115
0.0082 {0,0126
0,0086 | 0,0134
0.0089 |0,0138

0.0091 | 0,0141
0.0092 | 0.0142
0.00922| 0,014
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00182
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0,0200
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0.0087
0.0126
0.0160
0.0186
0.0222
0.0243
0.0256
0.0264

0,0268
0,0271
0.0273
0,0274
0.0234

0.0177
0.0266
0.0325
0.0376
0.0444
0.0434
0,0510
0.0526
0.0536
0.0540
0.0542
0.0544
0.0559
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Table 7. Values of 1lift coefficient C = CyN + Cy‘l’ as function

of o and A 7,
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0.0110| 0.0193] 0.0305| 0,0415| 0,0515{ 0,0609 | 0,0708 | 0.0820| 0.0804| 0.1030
0.0300 | 0,0450 | 0,0601.| 0.0750| 0,0900| 0.1026 | 0.1210] 0.1330| 0.1505
0,0205} 0.0383} 0,0560 | 0.0745| 0,0950| 0,1142] 0.1300| 0.1515| 0.1680 | 0.190y
0.0232} 0.0435| 0,0665| 00860 0,1080| 0,1295] 0,1510( 0,1750] 0.1950| 0.2150
0.02751 0,0520| 0,0800| 0.1030} 0.1300} 0.1540} 0.1790 [ 0,2055{ 0.2280( 0.2500
0.0302{ 0,0580 | 0,0880| 01150 | 0.1440| 0.1700| 0,1970| 0.2250 0.2500 | 0.2740
0.0320{ 0,0615 0,0930| 0,1230] 0.1520| 0,1800 | 0.2090 | 0,2375| 0.2640 | 0.2890
0,0329| 0,0640 | 0,0960| 0.1270| 0.1570] 0.1870| 0.2160 | 0,2450 | 0.2710{ 0.2980

.0 0,0655 | 0.0980 0.1300( 0.1600| 0.19131 0.2200 | 0.2500 | 0,2760 | 0.3040
0,0332| 00660 0.0990| 0.13101.0.1617 | 0.1940 | 0.2230 ! 0,2520 | 0.2790| (.3070
0.0338 [ 0.0670 81% 0.1320| 0.1625| 0,1955| 0.2240} 0,2535 { 0.2800| 0.3080
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0,0338| 0.0672 0.1320| 0.1630] 0,1960| 0,2240| 0.2540{ 0,2810| 0.3090
0.0330 | 0.0685 0.1350 | 0,1670| 0,1990 | 0.2290 ) 0.2590 | 0,2890| 0.3180

Table 8. Values of load coefficient Cpy = y/7\ as function of
a and A
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0.022 {00386 {0.0610 | 0.083 |0.1030 [0,1218 | 0.1416 | 0.1640 |0.1808 |0.2100
0.0165 |0,0300 {0,0450 | 0,0601 | 0.0750 |0.0900 | 0.1026 |0.1210 |0.1330 | 0.1505
0.0137 |0.0257 | 0,0374 | 0.0496 |0.0535 | 0.0763 |0.0868 |[0,1010 |0.1120 | 0.1266
0.0116 | 0,02175| 0,03325| 0,0430 | 0,0545 | 0.06475; 0.0755 | 0,0875 | 0,0975 {0.1075
0.00918| 0.0173 | 0,0267 | 0.0344 | 0,0434 |0,0513 | 0.0597 | 0,0685 | 0.0760 | 0.0834
0,0075 |0.0145 |(.0220 | 0.0284 | 0,0360 | 0.0425 | 0.0493 | 0.0563 | 0.0625 | 0.0686
0.0064 10,0123 | 0,0185 | 00246 | 0.0304 | 0,0360 |0.0418 |0.0475 | 0.0528 |0.0578
0,00548| 0,01066| 0,0160 | 0.0212 | 0,0262 | 00312 | 0.0360 | 0.0408 10,0452 | 0.0497
0,00475{ 0.00915| 0,0140 | 0.0186 | 0.0228 | 0.0274 {0.0314 |0.0357 (0.0394 | 0.0435
0.00415{ 0.00825! 0,0124 | 0.0164 | 0.0202 | 0.02425; 0.0279 [0.0315 | 0.0349 | 0.0384
0.00375 0.00745| 0,0111 | 0.0147 | 0,0181 10,0217 10.0249 |0.0282 |0.03106] 0.0342
0.00338] 0,00572 0.0100 | 0,0132 | 0.0163 | 0,0196 | 0.0224 | 0.0254 | 0.0281 |0.0309
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Table 9. Values of ratio Cr/Cr as a function of « and A
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0968 | 0935] 0905 0876 | 0.846 | 0.813 | 0,783 | 0,754 | 0.725 | 0,695
. X . 0.746 | 0,715 | 0.686
0960 | 0831 ) 0900 | 0.868 0.837 | 0802} 0771 | 0.742 | 0.709 | 0.681
9655| 0,930 | 0.899 | 0,866 | 0,834 | 0501 { 0768 | 0,740 | 0706 | 0.679

. 0,832 | 05800 | 0766 | 0737 | 0.705 0.675
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Figure 1. - Flow about seaplane float in two-dimensional flow,

Figure 2, - Flow about flying-boat-hull bottom in two-dimensional flow.
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Figure 6. - Variation of hydrostatic and hydrodynamic 1lif't forces ex-
pressed in percentage of sum with angle of attack for planing plate
at V = 6 meters per second, load Y = 18 kilograms, and width 1 = 0.3

' meter.
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Figure 8. - Curve of relation between hydrostatic and hydrodgnamic 1ift
forces computed for plate planing at angle of attack o = 4~ and load
Y = 18 kilograms.
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Figure 10.
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Flgure 11, - Dependence of friction coefficient on Reynolds number for flat plates.
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Figure 23, - Computed resistance curves for a plate planing at angle
a = 49, load Y = 18 kilograms, and width 1 = 0.3 meter.
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