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-ICAL MEMORANDUM 1246

>=
HYDRODYNAMIC PROPliEIT~”OF PiANIiiGSURFACES

AND FLYING BOATS*

By N. A. Sokolov

INTRODUCTION

The study of the hydrodynamic properties of planing bottoms
of flying boats and seaplane floats is at the present time based
exclusively on the curves of towing tests conducted in tanks.

EI order to provide a rational basis for the test procedure in
tanks and practical design data, a theoretical study must be made
of the flow at the step and relations derived that show not only
qualitatively but quantitatively the inter-relationsof the various
factors involved.

. The general solution of the problem of the development of
hydrodynamic forces during the motion of the seaplane float or fly-
ing boat is very difficult for it is necessary to give a three-
dimensional solution, which does not always permit reducing the
analysis to the form of workable computation formulas. On the
other hati, the problem is complicated by the fact that the obJect
of the analysis is concerned with two fluid mediums, namely, air
and water, which have a surface of density discontinuity between
them.

The theoretical and experimental investigations on the hydro-
dynamics of a ship cannot be completely carried over to the design
of floats and flying-boat hulls, because of the difference in the
shape of the contour lines of the bodies, and, because of the
entirely different flow comiitions from the hydrodynamic view-
point. Thus in ship construction, only the hydrostatic forces are
considered ani the hydrodynamic lifting forces are entirely ignored;
in flying-boat construction this procedure cannot be followed because

*“&terialy po GidrcdinamicheskomuRaschetu Glisserov i.
Gidrosamoletov.“ CAHI Report No. 149, 1932, pp. 1-39.
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for the working speeds of the planing surface (of
to 100 la@r) the hydrodynamic forces take up the
the weight of the structure. only a small part of

the order of 60
greatest part of
the wei~t beim

supported by the hydrostatic forces due to-the water dispiacement~

This entire analysis was conducted on the assumption of two-
dimensional flow. A picture of the flow about the seaplane float
in the relatfve motion at the instant after rising on the step is
given in figure 1. The lines of flow LD going from infinity and
meeting at the sur’faceof separation of the air and water mediums
separate at point D, where they meet the float, the streamline of
the air passing above, ati flowhg around the float along the line
DCB; the particles of water, moving along the line DEB wet the
contour of the float below. At point B, these two boundary lines
of the gaseous and liquid mediums again meet fozming the separating
surface BH.

In the case of the flow about a two-step planing ~ottom in a
two-dimensional ideal flow, the flow picture will have a somewhat
different appearance (fig. 2). The air particles lying on the line
of flow (separating surface) ID will, as before, flow about the
above-water part of the bmly DCF. The water particles meeting on
the streamline LD in contact with the particles of air wet the
surface of the body starting at the point D. At point B, the
water particles leave the contour of the planing surface, wet the
rear part EKN (in an actual flow, the region of suction), and at
point N they again meet the surface, leave it at point F and
continue along the separating surface FH.

In an actual flow for a finite span of the planing surface, the
flow picture in the above-water part will differ considerably from
the picture just given but the flow picture of the below-water part
remains essentially the same.

‘l!hispaper develops, in general form, the lift and drag equa-
tions for the motion of a solid body on a separating surface. Then,
considering the solid body as a half-submerged flat plate, these
formulas are mcdified somewhat and the lift and drag formulas for
the planing flat plate are obtained. By evaluating the experimental
data, the analytical expressions are supplementedwith test curves
and finally all data required for the hydrodynamic computation of
a seaplane float or flying boat with a flat bottcm are obtained.

.—. . II
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1. MOTIO?JOF SOLiD BODY AT BOUNDARY OF

MEDIUM3 .OFDIFFguml JmrspY

3

‘IWOFLUID

In the general case, this problem MY be formulated as follows:

The solid body A moves famti with constant velocity V. in
such a manner that at all times during the motion the part DCB Is
in the fluid medium I of density P1; whereas the part bounded by
the contour DE6 is in the fluid medium II of density P2 (fig. 3).

In considering the relative motion, it is assumed that the
x-axis coincides with the surface separating the fluids in the
undisturbed state and is directed along in the direction of motion,
the y-axis being at right angles and directd up.

The flows are assumed two-dimensional;both flows are potential,
and the separating surface in the relative motion is fixed.

In passing from fluid I to fluid II, there is a discontinuity
in the density and in the first derivatives of the pressure with
respect to the coordinates. Moreover, there is a velocity discon-
tinuity at the separating surface. At an infinite distance in front
of the bcdy, both fluids are assumed to be relatively at rest; phys-
ically this assmnption is comparable to assuming that in the motion
of the solid bcdy over the water surface there is no tail or head
whd.

Because medium I possesses all the properties of two-dimensional
flow, the usual hydrodynamic equations of two-dimensional flow can
be applied and the resultant pressure from flow I, on the portion
of body A which is bounded by the line BCD aml wetted by fluid I,
can be obtained. The resultint pressure of flow II on the remaining
part of bcdy A, which is bounded by the contour DEB and wetted
by fluid II, can be found by means of a similar manner of operation
With medium II. The total force exerted on the body by fluids I
ad II is equal to the geometric sum of the forces exerted separately
on the moving bcdy by each flow.

In the following discussion, all the results are expressed in
terms of fluid 11: The final formulas for medium I will be the same
as for medium II except for change in the contour of integration and
replacement of P2 and 72 by P1 and 71) indicating that the

mass ad weight densities are now referred to medium I. For conven-
ience the subscripts itiicating that the magnitudes ref&? to medium II
exe,anitted.
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For steady motion with
point of the wetted contour
13ernoulli-Iagrangeequation

NACA ‘lM1246

v

velocity potential, the pressure at any
BED by medium II is determined by the

V2
P=c-P~-YY (1)

The components of the pressure along the coordinate =es for the
element

The

ds of the contour may be written

( V2

)
npy(pds). C-py-YYdx

components of the force P2 exerted on the solid body b,y
medium II along the axis are obtaifid by integrating these expres-
sions over the contour BED. These components are denoted by X2
and Y2; then

X2 =

Y2 =

The Bernoulli
infinity (y =

-~’O+~k,yiW+,~’20

!Lcti-lmy’;-t+‘2
constant C is determined by the conditions at
o, V=vo, p= Po) and is given by

V02
c .po+p~ (3)
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In medium II, let the flow be determined by the complex potential
function
.

‘2 =T~ + it$

where W2 is the velocity potential and *2 is the stream function.

With regard to the velocity potential Q. it should be noted
that for flfis I ati II the
the flow about a wing, will

fofi proposed by”N. E. Joukowsky, for
be used:

- V(y + f(x,y)

where f(x,Y) is a function of the coordimtes that satisfy the
Laplace equation.

With regard to the function f(x,y), the following point may
be made: The derivatives of the function f(x,y), ~f/ax, and
af/ay, which give the added (disturbance)flow velocities produced
by the moving body, have these properties: At an infinite distance
in front of the moving body and below and above the bmly, the deriv-
atives are of the order of smallness l/R; at an infinite distance
behind the moving body, but sufficientlynear the separation surface,
the derivatives are finite.

In the motion of a body of a homogeneous-infinitefluid the
derivatives aflax and af/ay, everywhere with increasing distance
from the bcdy, are of the order of smallness l/R.

Because the line BED is a streamline,

@=Vds

dw=o

Add to the right side of the expression for X2 the sum of the
terms

.
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and correapotilngly for Y2

Both of the added expressions are equal to zero inasmuch as for

the streamline BED d~.
(-vo+z)Q-%dx=o ‘otb’eqm-

tions (2) still hold.

Because

‘2 = ‘.2 - 2’

0=+(=)2 ‘(%)2

equations (2) can be rewritten separating the terms in the following
manner:

(5)
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The corresponding expressions for Xl and Y1 can be obtained
for fluid I, X1, and Y1 being obtained from X2 - Y2 by ‘
replacing p2, 72 hY PIY yl arxithe contour of integration BED
by the contour DCB.

The similar terms of the expreasfons for X2 and Y2 shall be
considered In pairs and by analogy the same terms for msdlum I.

The firs’.sums of the integrals for the mediums I ad II

‘J‘i+pof ‘=0
~ DCB J BED

and

are equal to zero because the integrals of dx and dy are taken
over the closed contour DCBED.

The following terms of equations (5) will be considered; they
are correspondinglydenoted by X~, X2F, Yw, and y2F where

‘2F = 72
f

y dy
BED

Y~. -yl J ydx
DCB

y2F = - 72
f

yax
BED

(6)

.
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These expressions, in general, give the resistance forces and
the lift forces due to the hydrostatic pressure on the wetted con-
tours DCB and BED.

In computing the lift forces ‘IF ad ‘2F> It Is necessary
to consider the following:

The volumes J ydx for medium I are taken between the contour

DCB and the x-axis, which is the water-line of the motion. The
volumes lying below the water-line are taken with the minus sign
(fig. 4). For medium II, the rule of computation is the opposite,
the volumes lying above the x-axis (for example, the area D&O’)
are negative.

lidroducing the notation

F1 = area B’CDD’B’

)

F2 = area B’DtEBB’
I

for the forces Y~
obtained:

‘3 = area D’D&D’ /

F4 = area BbB’B J

and y2F, the following expressions are

Ym = 71 (Fl +F3 - F4)

y~F = 72 (F2 +F4 - F3)
1

(7)

(,8)

Finally, X~ and X2F give the projection on the x-axis of
the hydrostatic pressures of fluids I and II on the contours DCB
and BED. By denoting the projections of BED’ and BED on the
y-aXiS by bOy ati>prby hl and h2, the ordinates of the
points D and B ‘canbe obtained.%m XW and X2F.,.-,

“=—_—_ ---- -,1. ,,-“.,.—------

.
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h12. %2 b (2b0 - b)
%= ?1.. .2 ,=.71 .,!. ..2.

YYYY”J

(9)

‘2F
%2

- h12 b(2b0 -b)
=Y2—=- 2 72 2

The force X~ IS directed along the motion; the force X2F, which
is a resistance, is directet-oppositethe motion.

In the case of the motion of a bcdy in a homogeneous fluid
(71 = 72), equations (8) ad (9) give the lift force equal to the
water displacement of the body and, as was to be expected, a resist-
ance equal to zero:

XF
h22 - h12 +

=X33+X2F=7
2

In determining the forces acting on
the fluid is aesumed
static lift force is

By returning to

) (10)
h12 - h22 o

Y =
2

a wing moving through air,
to be weightless and for the wing the hydro-
neglfgibly mall.

equations (5)

#
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The physical interpretationthat must be given to the obtafned
formulas in the limiting case where the densities of the fluids are
equal; that is, when the body moves through a homogeneous fluid, will
be considered. As the contours of Integration, for fluid I the con-
tour DLVHB shall be considered and for fluid II the contour BHVLD.
The sum of these contours is equal to the circle LW of infinitely
large radius and they have two branches$ DL and BH lying in the
surface of separation of the fluids, extending to infinity. In the
limiting case of a homogeneous fluid (pl = 02), the surfaces DL
and BH are not surfaces of separation and there is no discon-
tinuity in velocity or density (fig. 5). .

The possibility of replacing the contours DCB and BED, respec-
tively, by DLWHB and BHVLD, will now be considered.

The pair of contours DCB + BHVLD and BED + DLWHB give the
two closed contours DCBHVLD and BEDLWBB.

It shall now be proven that the expressions XN and YN taken
for the closed contours are equal to zero. For this proof, it is
sufficient to show that the expressions under the integral sign are
the total differentials of certain functions, that 1s,.

By expanding these expressions, the folluulng relations are
obtained:

.
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The.function
tion; thus, it has
DCB and BED are

11

f(xy)’ by hypothesis satisfies”the Laplace equa-
been shown what was required so that the contours
replaceable by the contours BEVZD and DLWHB.

respectively. It is &rely nece~sary to change the sign before tfie
integral for the described direction of going around the contour.

The same substitution is permissible for the expression YJ
because the function @er the integral gives the ctrculatlon over
an element of the contour due to the added flow f(xy). The c“ir-
culation due to the added flow for any closed contour lying entirely
in the fluids I and II is equal to zero for there are no vortices
within the fluid.

By integrating the terme XN and YN over the lines DL and
BH once for fluid I and a seconi time for fluid II, the sum zero
is obtained because the order of describing these contours of integ-
ration for the fluids I and II are opposite.

On integrating the same terms XN and YN over the circle
LWHV of itifnitely large radius, an infinitely small magnitude of
the order l/R results because af/& and af/ay, in the case
of motion of the body in a homogeneous fluid without a surface of
discontinuity,are of the order of smallness l/R. Thus, the terms
XN and YN are equal to zero for the motion of a body in a homoge-
neous fluid.

Further, the term YJ . PVOJ df taken for the fluid I over

the contour BHVLD and for fluid II over the contour DLWHB gives
as a result the expression

YJ = pVOJ (12)

where J is
includes the
see that the
for. in this

the circulation”of the fluid over any contour that
contour of the movi~ body. It is not difficult to
terms YJ taken over the lines DL and BH cancel,
case, the directions of paselng around the contours

of ~ntegratlonfor the fluids I and II are opposite.

In the general case of the motion of a body in a homogeneous,
weightless, and incompressiblefluld, the result leads, as was to
be expected, to the theorem of N. E. Joukowsky on the lift of an
airfoil.

.
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The physical meaning that must be given to the obtained for-
mulae for the motion of a solid bcdy on the boundary of two fluid
mediums in the presence of the surface of discontinuity DL ati HB
will now be investigated.

Consider the terms

XN = XM + X2N

where XN and YN are given by equations

It has been shown that in the case of
a’fhomogeneousfluid, the velocities of the
- af/ay, having the order of smallness
over a contour of infinite radius zero for

(11).

the motion of a body in
additional flow af/&
l/R, give on integrating

the terms XN and YN.

In the motion of a bcdy on the surface of separation of two
heavy fluids, the picture is somewhat different. The wave surface
behind the moving body does not decrease the amplitudes of its
waves because the case of the motion of an Ideal fluid is being
considered. For this reason, the velocities of the additional flow,
even at an infinite distance from the “bodybut sufficiently near the
surface of separation, have a finite value and the terms XN and
yN do not give zero on integration.

It was impossibleto reduce.theexpressions XN and YN to a
shorter and simpler form. In what follows the term XN shall be
denoted as the form drag. The form drag gives the projection on
the x-axis of the resultant hydrodynamic pressure of an Ideal fluid
on the wetted contour without taking account of the hydrostatic
pressure.

*

me term yN shall be considered in detail later in this report.

The last terms considered have the expression

YJ = YIJ + Y2J (13)

——, ,.—....—. . ..... ,,,-. ,, ,.,-. ,, , . ,. ....,,,-,,. , , .,...— ,



r
.

NACA TM 1246 13

where

. ,.. .

Y2J = p2v~ r fd = p2VOJ2 I

(14)

JBED

Physically, these expressions give the magnitude of the lift
force due to the circulation of the fluld and are equal to the cir-
culation about the wetted contour multiplied by the density of the
fluid and velocity of the flow at infinity. The theorem of N. E.
Joukowsky, in a somewhat different form, has thus been obtained;
namely, in the motion of a body on the surface of separation of two
fluid mediums of different density, the lift force due to the cir-
culation is equal to the sum of the two forces each of which is
determined as the product of the circulations over the wetted con-
tour multiplied by the density of the given fluid and the flow
velocity at infinity.

In sumar izing, the forces acting on a solid body moving half
submerged on the surface of separation of two heavy fluid mediums
I and 11 with de~ities P1 and P2 maY be expressed as follows:

where

The total resistance force is equal to

x = X~ + X2F + XIN + X2N

h12 - h22
x~ = 71

2

h12 - h22
X2F = - 72

x~=-:fm[=)2d’-(i)2 d’-2=%~l

‘2N = ‘~~~ [($2 ~ - (%)2 O ‘2~$d~
‘i

(15)

.

(16)



1111 Illmllll Im Ill , , ,,, ,,, ,,,, -,,!,,. !-! .!! .-. !. ! !.I. .- . . . . . . .. ——-.— —— —. ——

I

14

The forces X~ and
of the hydrodynamic force

The forces XIN and

The total lift force
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X2F give the projections on the x-axis
on the wetted contour.

‘2N are the form drags.

is t3XpI%8Sedby

Y =Yu+Y2F+Ym+Y2N+Y1J +Y2J

where

/

Forces YIF and y2F give the volumes of the displaced

(17)

I (18)

liquids

I

I and II.
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Forces YIN and y2N give the lift forces due to the shape of
the vessel.

Forces YIJ and Y2j- give the lift forces due to the circula-
tion.

The test results shall now be considered and the formulas
obtained shall be applied to the case of a flat half-submerged plate;
the results obtained at the”Hamburg towing basin by Sottorf shall be
used.

The order of the component forces is determined in percentage
of the total lift force and resistance. The curves of figures 6
and 7 give this relation and refer to a flat plate towed with con-
stant velocity (V. = 6 m/see) for a constant vertical load (Y = 1S kg)
and having a span at right angles to the direction of motion
(2 =0.3 m). ‘TReforces were computed only for water; the aero-
dynamical forces were not taken into account.

Inspection of these curves permits the following conclusions
to be drawn:

1. Equation (17) gives for the lift forces three components:
the hydrostatic, the one due to circulation,and the one due to
form. The numerical computation given and figure 6 show that the
lift force yN, due to the form, is practically zero. (In the
computation the magnitude, YN constituted no more than 3 percent
with some fluctuations on either side due to the inaccuracy of the
computation procedure.) In this case, the total lift force of a
solid body is equal to the sum of two forces: (1) the hydrostatic
force YF and (2) the force due to the circulation YJ, which
gives the physical analogy to the theorem of Joukowsky where the
total lift force for the solid body moving in a homogeneous fluid
is equal to the sum of the circulation and the hydrostatic forces.
The hydrostatic force, due to its relative smallness for air, is
generally neglected.

An assumption based on a comparison of the results of tests
is expressed here. A strict proof that the lift force Y~ Is
equal to zero was not obtained. A deeper analy8is of the essential
nature of the flow about a solid body at the surface of separation
will permit determining more fully the magnitude and the character
of the force YN. It should be noted that equating the term yN
to zero permitted deriving the a~lytical relation for certain
magnitudes characterizing the resistance of a moving plate, in



NACA TM 1246

particular, the resistance XN. Comparison with the test results
given by Sottorf confirmed the correctness of the conclusion as to
the zero value of YN, and the character of the test curves for
increasing span of the plate agrees with the obtained analytical
expression for infinite span.

2. The hydrostatic li’ftforce, which for small angles of attack
assumes a considerable part of the load, rapidly drops with in-
creasing angle of attack, Practically reaching zero at the angle
of attack u . 10°.

3. The hydrodynamic lift force, due to the circulation, is
small at smll angles of attack, rapidly increases with a, and
at 10° practically assumes the entire vertical load.

Both of these conclusions become physically understandable If
a disturbance in the flow arising from the change in the angle of
attack of the plate is considered. At the angle of attack u near
zero the disturbance in the.flow is small; the streamlines prac-
tically maintain their horizontal direction and the circulation due
to the added flow of velocity potential f(xy) over the wetted
contour is very small. At this instant, the entire load of the
plate can be and is taken up only by the hydrostatic lift forces.
With increasing angle of attack, the plate becomes more submerged
in the fluid, the circulation of the added flow increases, and
therefore the circulation lift force increases. At the same time,
the value of the hydrostatic force relatively decreases because the
hydrostatic force normal to the plate gives, with increasing angle
of attack, a relatively smaller vertical component.

The resistance of the flat plate in moving half submerged in a
fluid consists of the surface friction drag, the hydrostatic resist-
ance, and the form drag. Figure 7 shows relative change of these
forces. The induced drag due to the shed vortices, In the case of
a finite span of the plate, will not be considered because the coef-
ficients derived on the basis of test results already include the
effect of vortex formation on the planing flat plate.

The following conclusions,which are in full agreement with
these preceding results, may be derived:

4. The I%iction drag was computed by use of formulas that take
into account the velocity distribution on the surface of the plate
and the Reynolds number (see formulas that follow). At small angles
of attack, the friction drag constitutes a large part of the total
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resistance ad 1s of the otier of 6 percent for the angle of attack
u . 10°. This drop is essentially explained by the decrease in the
wetted,surface.with..incieasingangle of qttack. In correspondence
w.fththe results of tests, the turbulent state of the surface fkic-
tionwas assumed here.

.5.The hydrostatic resistance has, in general, a small value.
At a = 0°, the value Is practically zero; it increases reaching a
maximum at a = 2.50 ati then drops almost to zero at a = 10°.
This effect is understandable if the fact that the rise of the
fluid (to point D, fig. 4) decreases the magnitude of the hydro-
static pressure is considered.

6. The hydrodynamic resistance XN, termed the “form drag,”
is zero at a = 0° and increaseswith u reaching 93 percent of
the total resistance of the plate at u = 10°. The explanation of
this ’phenomenonlies in the fact, that with increasing angle of
attack there is an increase of that, which in aerodynamics is
termed the “frontal area” of the plate, that is, the pro~ectlon
of the wetted surface, on a plate perpendicular to the direction
of motion. At large angles of attack, there is a greater decelera-
tion of the flow, hence, an Increase in resistance XN.

The present work may be viewed as an attempt to investigate
hydrodynamicallythe nature of the phenomenon of the motion of a
solid bcdy on the surface of separation of two fluid mediums of
different densities. The considerationof the general case of the
motion of a solid body is now concluded. In the next section,
the general formulas obtained are applied to the motion of a flat
plate and on the basis of experhental data test curves are pre-
sented that permit the computation of the planing plate.

2. MOTION.OF HALF-SUBMERGEDFLAT PIATE

ON SURFACE 0FHIL4VY FLUID

In the motion of a seaplane or flying boat on the surface of
water, after rise on the step, the hydrodynamic llft forces assume
the larger part of the total weight and only a very small part of
the total weight of the structure is supported by the hydrostatic
force (force of water displacement).

At the.veloclty of motion of a planlng surface equal to zero,
the’entfre structure is balanced by the hydrostatic lift forces.
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Thereafter with increasing velocity (fig. 8), due to the hy&odynamic
forces that arise, the plani% surface begins gradually to rise out
of the water in such a ma~er that the mm of the hydrodymuuic lift
forces and the water dlaplacement forces la at all thee equal to
the weight of the float. At the velocity V .Vl, it is a~~~ed
that the bottom has come out on the step, that is, the initial weight
is taken up by the hydrodynamic lift forces, and that the water dis-
placement is not large and can be neglected. Actually, the water
displacement of the body drops with the velocity and would become
zero at V = m.

‘I’hecontours of the bottom lines of planing bottoms in the
irm.nediateneighborhood of the step closely approximate those of a
flat plate. This fact permlte the supporting part of the bottom
of a seaplane, after coming out on the step, to be considered as a
flat plate moving half submerged at the angle of attack a with the
horizontal because the character of the motion is sufficiently like
that of a two-dimsnsioml flow.

In the ‘caseof the motion of a two-step baiy, the rear step
meets the surface of the water already disturbed by the forward step
and therefore the angle of attack of the rear step will not be equal
to the angle between the line of the bottom and the water line of
the motion. The choice of the optimum angle of attack at the rear
etep should be made on the basis of a special analyeis of the phen-
omenon of the flow about the bottom at the rear step. In the given
caee, this report is restricted to the consideration of the flow
about the bottom at the forward step.

Let the flat plate of infinitewidth, submerged to the length
bO, move with velocity V. over the water surface at the angle of
attack u to the horizontal. As is shownby experiment, the wetting
of the surface of the moving plate starts not at point E (fig. 9),
which is determined by the interjectionof th,ehorizontal with the
plate, but somewhat higher, namely, at point D. The ratio b = BD
to b. = BE is a certain tictlon of the angle of attack, the vel-
ocity of motion and the depth of submergence of the plate.

The present discussion considere the coordinate points as known
and, therefore, the true wetted area S = lb is known. At the end
of this paper it will be shown how the value of the ratio b/b.
may be approximately determined.

Application of equations (15) and (17), derived in the general
caae for the solid body of arbitrary shape moving on the surface of
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separation of two fluids, will now be made to
partly submerged flat plate. In applyiu the

the motion of the
obtained results to

. . the partic~ problqm of constructing.thegraph of the lift and
drag forces of a flying boat hull or seaplane float during take-off
on water, this paper is restricted to the determination of the forces
acting on the plate ‘dueonly to the water ax not the aerodynamic
forces, which in view of the vsriety of shapes of the above water
parts may be more reliably obtained from special wind-tunnel tests
on models. Thus, in all the following equations P1 and Y1 will
not appem.ati p2 and 72, now denoted by P - y, will cor-
respofi to the mass and weight density of the water.

The kinematic condition for the line of flow LDEBH coinciding
with the part DEB of the plate (fig. 9) may be written

(19)

where a denotes the angle of attack of the plate. In what follows
a new =gnltude 6, which shall be denoted as the mean relative
retardation of the flow over the part DEB, will be introduced.
Thus, by denoting the total velocity of the flow at the streamline
by V and the flow velocity at infinityby VO, the retardation
will equal the difference:

AV = Vo-v

and the mean relative retardation C, the arithmetic mean of The
magnitude AV/TO over the contour DEB is

e () J.~v= AV db.—
V* VO b

Cp
BED

(20)

.

!.
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By applying equations (15) h (17) to the case of the motion of a
partly submerged plate, the hydrostatic lift and drag forces,
expressed by the following formulas, are obtained:

xF.- 0.5 7 sin2 ~ (2bo - ~

Y 1

(21)
YF = 0.25 y s.in2~ (2bo - b “

where the forces are referred to unit length of the plate in the
direction of the span.

In order to express the terms ‘N, yN9 and YJ aS a fUnc-
tion of the ratio 6, the expressions of the magnitudes under the
integral signs in equations (15) and (17) shall be written as func-
tions of 6. Because the contour BED is a streamline (fig. 10),
the following relations may be written.

%
= V. -Vcoea=- Vop-(l-c)cosa]

$= -Vsina=- V. (1 - 6) sin a.

By substituting the expressions obtained for 3f/& and af/ay
in equations (15) and (17) and after some transformations,the
following equations are obtained:

XN=- 6(2- E) sin a; bV02

[ 1YN= c(2-6)cosa-2(cosa+ ~-l) #bVo2

}

(22)

‘J = 2(cosa+6- 1) : bV02
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In these equations, d also in all equations given hereafter,
a certain assumption is made; namely, the Integral of the squares of
the ratio ..AV/VO were substitutedby the square of the mean ratic
AV/VO, that is,

Actually, if AV/VO = 6 + Ac, substitution in the integral
glve~

J BED ~ BED

‘2Jm%+2’lmA’%+
The first integral on the right gives C2; the second integral

gives zero, because by definition (’ACdb/b = O, ad fj.nally

j(@ /2 db b gives a positive quan~ity, which, however, is so

small that it may be neglected. Thus, for coefficients of the
order of unity, this quantity.in the most unfavorable case will
amount to several thousandths and therefore with a sufficient degree
of accuracy the following equation may be written:

n

(23)

Thus, fur a given angle of attack and a
lift fOrCO from the CII’CUlatiOn~J 81d the

given wetted area, the
forces yN and XN
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can be computed, if the mean relative retardation 6 for given
parameters of the motion is known.

The dependence of the ratio 6 on the angle of attack u ati
the wetted area will be established later when the experimental data
obtained by Sottorf at the Hamburg towing basin are considered. For
the present, the derivation of further formulas, which are required
for the practical computation of the problem of a planing bottom,
shall be regarded.

Up to now, the phenomenon in an ideal fluid, without taking
account of the friction, has been considered. In the case of the
motion of a solid body (plate) on the boundary of real (VISCOUS)
fluids, it is necessary to add to the forces already determined the
force due to the friction at the surface of the body. The formulas
for the frictton force of a planing flat plate will be derfved.
Investigations on the surface friction have shown that the friction
on an element of surface of area ds is expressed in the following
form

dR

where Cf is a coefficient,
and V Is the flow velocity

= Cf: V%s (24)

which depends on the Reynolds number,
at a given point of the wetted area.

The dependence of the coefficient of friction on the Remolds
number, according to the latest investigationsof the friction of
flat plates, will vary with the flow regime (fig. 11, reference 1).

For smooth polishedplates for flow regimes with Reynolds
number Re< 5sl&, the dependence of Cf on Re has the follow-

ing form (curve b):

1.327cf.—
6

(25)

For the motion of the same plate with Rejmolds number
Re > 5.105, the laminar flow, with Increasing Reynolds
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gradually goes over into turbulent flow ati the depetience
on Re is expressed by the fomuula of Frandtl (curve c):

,,

0● 074 1700cf. —___ (26)
Sfi Re

For a plate with blunt leading edges or with roughness that
produces turbulence, the test data give the
Re in the following form (curve a):

Cf _ 0.072

‘a

lhtegrating equation (24) over S and
Vn - AV. the following is obtained for the

dependence of Cf on

(27)

..

replacing V by
plate of wetted area

S“= 2b:”

R =cf(l- E)2 :SV02 (28)

The friction R
nents along the axes

The coefficient

is tangent to the plate so that its compo-
of coordinateswill be

= - Cf (1

= - Cf (1

(1- 6)2
magnitude of the friction drag

C)2 C08 a; SV02

p SV026)2 sinuz
1

(29)

cos u gives the correction in the
taking into account the inclination

of the plate to the flow, or in the more general case the curva-
ture.

The force yR shall be neglected in what follows as tt is
very smll In comparison with the other components that detemuine
the total lift force of the planing bottom.
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After adding all the forces exerted on area S = 2b by the
water, it may be said that the resistance of the plate is composed
of the hydrostatic resistance XF, the form drag XN, and the
friction drag XR:

X.XF.+XN+XR (30)

and for the components the following expressions are obtained:

xF.- 0.5 y sin2 u (2bo - b) S
)

(31)

XR=-Cf (l- @ Cos Ug SV02

)

In deriving the resistance forces and in passing from two-
dimensional to three-dimensionalflow, that is, to a plate of finite
span 2, the induced drag due to the vortices shed at the surface
of the plate, was not introduced.

This drag could be introduced, if by analogy with the airfoil
theory, m-shaped vortices are assumed and if the Biot-Savart
theorem is considered as applicable without any changes to the
present case of motion on the surface separating two fluid mediums.

This assumption may be considered superfluous,because in
order that the formulas developed here may be practically applied
it is necessary to know the value of the factor 6 for the given
aspect ratio of therplate and the angle of attack. The angle of
attack is obtained on the basis of test data and therefore already
takes into account the induced drag. It would be incorrect to
introduce a second induced drag.

the
and

The lift force of a planing plate is expressed as the sum of
hydrostatic lift yF, the hydrodynamic lift due to form YN,
the lift due to the circulation YJ:

Y.YF+YN+YJ (32)
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where the components are given by

25

the equations

“2’u-(2bo- b) S

)
\

[YN=C(2-. C) COS U-2 (cosa+c -

J:
1] # SV02 (33)

yJ=2(C08u+6- 1) : SV02

In the following discussion, use will be made of
formulas In a somewhat different form Introducing the
coefficients C=, CR~ and Cy where

Thus ,

The
lift and
b/b

f
=x

.angeof

Cx=c(2-e)slna

CR = Cf (1 - C)z cos a

cy=c(2-c)cosa 1

XN = Cx g SV02 1

P SV02
‘R = CR 2

,}
y~+yJ= Cy; SV02

J

the derived
nondimensional

(34)

(35)

3. EVALUATION OF EXPERIMENTAL DATA OF SOTTORF ‘

formulas derived herein permit the determination of the
the drag of a partly submerged plate if c is found and
as functions of the parameters of motion as the velocity,
attack, and aspect ratio.

.—
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The relation between the ratio 6 ami the velocity, the a~le
of attack a, and the aspect ratio A of the wetted area will now
be determined. In order to solve this problem theoretically, there
1s required the analytical determination of the.flow, In other words,
a knowledge of the caplex.potential function w . p + $1. In
solving this problem, great mathematical difficulties are encoun-
tered. Because the problem of giving formulas suitable for practical
use is present and mathematical rigor of this analysis is not pre-
tended, use shall be made of the tests of Sottorf (reference 2) on
planing plates for the determination of the depemlence of 6 on

% Vo) and ?$.

The tests of Sottorf at the present are the ox published
experimental data that permit analyzing the phenomenon of the
planing of a plate with sufficient completeness. It should be
remarked that the tests give a large number of test points for
small aspect ratios only. For 2 C A < 5, the number of test
points is very small, and in order to obtain the required curves
use must be made of the methcd of interpolation.

For A>5, there are no test data at all but it was possible
to obtain theoretically the fundamental relations for A = = and
then by extrapolating the test curves it was assumed possfble to
prolong them to the aspect ratio ~ . 10.

The tests of Sottorf were conducted at the Hamburg towing basin
and were made on a plate of constant span (Z = 300 mm). For con-
stant lift forces, varying l%om 4 to 45.2 kilograms, the plate was
towed, over a range of velocities from 4 to 9 meters per second, at
various angle of attack. The results of the test give for each
towing trial the following experimental values:

Y

x

a

V.

b.
b

M

lfftfor- Ofplate, (kg)

total resistance

angle of attack,

towing

wetted

wetted

moment

velocity,

of plate, (kg)

(deg)

(m/see)

=“ in the state of rest, (mm) ‘

QQ #inmotion, (~)

with respect to lower edge of plate, (kg/m)
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On the basis of the tests of Sottorf, the derived formulas per-
mit obtaining the magnitude c in two ways: either operating with
equation .(3o)and t~..test data on the resistance to the motion, or
using the same test data and equation (32) referring ohly to the lift
i?orces. In the total resistance to the’motion, there enters the
component of the i’klctionalresistance on the x-axis. In computing
the resistances the probability of error is not excluded because the
frictional resistance contains the coefficient Cf, the formulas
for which cannot be considered as sufficientlycorrect for all regimes
of the motion.

The factor c canbe determined with a greater degree of
accuracy from the data and formulas for lift forces. In this case,
the component due to the friction is very smll so that the errors
in the determination of c will be considerably less than in the
first case.

The obtained graphs are not considered
and correct them it is necessary to turn to
mitted by the accumulated experimentaldata

6 shall be determined
force~~i?).

With the accuracy inherent to
of the hydrostatic lift forces for

from the

all test

final and to supplement
the first case as is per-
on the planing plate.

equation of the lift

results. the magnitude
each towing test”ls dete~ined by

YF = 0.25 y sin2u (2b0 - b) b ● 0.3

where for y the value 1000 kilograms per cubic meter was chosen.

Then, subtracting i%om the total lift force Y measured in the
test the lift YF,
of equation (32) is
following relation:

the difference is obtained,which on the basis
connected with the required magnitude e by the

2 (Y - yF)
6(2-6)=

0.3 obVo2 Cos u

By solving this equation for c, the value of e may be
obtained for each towing trial. Thus, for example, for V . 9.85
~ters per second and the load Y = 22.6 kilograms the results
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shown in figure 12 were obtained. A similar evaluation of all the
test data of Sottorf gives a series similar to the curves of c as
a function of A and a for the velocities V. and load Y. From
these curves, as a general rule, it may be concluded that for a given
velocity V and vertical load Y on a plate of constant tipan Z,
the ratio c increases with increasing angle of attack and the wetted
aspect ratio A = Z/b.

lMom these curves, the value of c as a function of the angle
of attack can be found for any constant value of the aspect ratio
A= Z/b. The curves of figure 13 give the change of c with the
angle of attack a for a constant value of the wetted aspect ratio.

The change in c as a function of the aspect ratio A for
constant angles of attack a is shown in figure 14.

The numerical values for these curves are given in table 1.

The available experimentaldata permit the following conclusions:
The value of c does not depend on the velocity of the planing plate
and is a fiction of the angle of attack u and the wetted aspect
ratio A.

For a given A, the increase of c with the a@e of attack
u is represented by a straight line. For a constant angle of attack
E increases with increasing A. The straight line of c against a
with increase in the parameter A (fig. 13) approaches a certain
straight line that, it may be assumed, corresponds to an infinitely
large aspect ratio (A ==). In the previous section, it was shown
that by computation the obtained formulas give, for the partly sub-
merged plate, a lift force yN practically equal to zero. If this
assumption, which has not been mathematically proved, is made and,

the coefficient of $ SV02 in the expression for yN (eq~tions (33)1

are equated to zero, the following relation between 6 and the angle
of attack is obtained.

e(2- C) Cos u - 2(cosa+ 6-1)=0

from which is obtained

“F
(36)
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The obtained expression gives the relation between c and the
angle of attack for infinite span.

l?he’c~e”of c plotted against a according to equation (36)
is given in f@ure 14. The statement that the straight lines.of c
against a, with increasing A, approach asymptotically a certain
“straightline correspotiing to A = 00 is confirmed by the obtained
analytical relation in equation (36)0 It shotid be noted that this
expression was obtained independentlyof any experimental data and
the values of the other forces obtained on its basis for A . m do
not contradict the physical phenomena, moreover, they confirm the
asymptotic approach of the experimental curves to the limiting values
correspondingto A . =.

If the dependence of 6 on u and m is known, for any given
angle of attack and aspect ratio the value of the coefficients Cx,
Cy, and CR/Cf can be determined by use of equation (34) and there-
fore, the drag and the lift of a plate planing at angle of attack a
and aspect ratio A can be computed.

The curves of the coefficients C=, Cy9 and CR/Cf plotted
against A for various angles of attack u are given in figures 15
to 17. There are also given the values of these coefficients for
an infinitely large aspect ratio, the value of c being determined
from equation (36).

h addition to 6 the magnitude X. b/bO must be known for
complete hydrodynamic ccxuputationof the planing plate. The knowledge
of the magnitude X makes possible the computation of the hydro-
static forces” XF and YF. However, the computation shows that the
values of XF and YF, for velocities corresponding to rise on the
step and greater, are negligibly small in comparison with the remain-
ing acting forces. For this reason, within the range of velocities
considered, it may be assumed that these forces are absent.

The value x evidently depends on the velocity, the angle of
attack, and the aspect ratlo. An attempt to obtain this relation on

‘ the basis of experimental data did not give positive results. The
determination of this relation will be returned to later and In
order not to defer the discussion it is recommended that the planing
angles of a = 3 - 4° be used to assume the value X= 1.15, which
of course Introducesa certain inaccuracy in the hydrodynamic compu-
tation at velocities up to the rise on the step. The errors introduced
by this approximation, however, rapidly drop and at the rise on the
step entirely vanish.
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The determinantion of the experimental relation between the
center of pressure and the parameters that determine the motion of
the plate are now considered. Here, as before, use is made of the
tests of Sottorf. The following results are obtained on the basis
of an analysis of these tests.

The forces acting on the partly submerged plate may be divided,
as regards the determination of their moments, into the following
three-kinds:

(1) the
whose moment

(2) the

—

friction forces, directed tangentially to the plate
about the lower wetted edge is zero;

hydros~tic pressure forces, perpendicular to the plate,
whose value over an element of the plate- db varies linearly. The -
center of pressure of the sum of the hydrostatic forces is easily
determined and their moment about the lower wetted edge of the plate
is

(37)

(3) the force of the hydrodynamic pressure of the fluid on the
plate. These forces, b.ehg perperxlicularto
the lower wetted edge the moment ~, which
following relation:

the plate, give about
is expressed by the

(2 - 6) bdb (38)

This expression was obtained in the following manner. The
hydrodynamic force acti% ’onelement db will be equal to:

V2
U.p ~e(2-c)db= $ (V02 - #) db

2

Its moment ~ about the lower wetted edge is given by

.
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By integratingthis expression between the limits O to b,
equation (38) Is obtained for a plate of width 2.

It is not difficult to see that the equation for the moment of
the hydrodynamic forces about-the lower edge of the plate may be
briefly expressed in the following form:

MN.pT ’02 & CM

where

J
b

CM=L e(2- C) bdb
b2

o

(39)

(40)

It is obvious that the magnitude CM is a function only of 6. This
fact is of essential importance In the procedure of evaluating the
data of Sottorf, which follows.

From the measured mament of all the forces acting on the planing
plate, the moment (computedby means of equation (37)) due to the
hydrostatic pressure is subtracted. By dividing the remainder by

V02 lb2,
‘T

~ may be obtained. The coefficients CM computed

in this manner for all the test points of Sottorf, detemnine a cer-
~in curve Of CM ~in8t ~, when graphically presented.

This curve, which with sufficient accuracy is a straight line
is shown in figure 18. The straight line, which is computed by the
mthcd of least squares, gives the slope k = 1.58.

Thus, the relation
hy&cdymunic forces and
ing equation:

between the moment coefficient CM of the
the ratio C may be expressed by the follow-
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wetted edge may
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of all the forces acting on the plate about its lower
be written in the following form:

M=

If for a
the plate and
be found fran

MF+ MN=
3bo - 2b ’02 ~b2y2b2 sin a

6
+ kco —

2
(42)

given velocity and given load the angle of attack of
the wetted aspect.ratio are known, the value of E can
the curve of c against a and A. From the obtained

equation or from figure 18, the value of the moment coefficient can
be found. If required, the center of pressure of the hydrodynamic
forces can then be obtained. By adding the moment of the hydrostatic
forces obtained flmm equation (37), the moment of all the forces act-
ing on the plate can also be obtained.

The wetted aspect ratio that is required here may be detenined
in the following manner. From the data the load coefficient CB is
obtained

(43)

This coefficient characterizes the degree of loading of the
plate. On the curve of figure 19 for a given angle of attack and
COnS~nt CB, the aspect ratio A, at which the given plate will
plane for the velocity V, width ?, and load Y may be found.

In the following discussion, the ratio of the lift force of the
plate to the total resistance as the planing efficiency of the plate
will be

k;=-

The value of the coefficient k for the case of motion of a
plate of finite aspect ratio in a real VISCCUS fluid will now be
considered in more detail. The magnitude l/k . y, the reciprocal
of the efficiency, will now be analyzed.
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The derived equatfone permit writing the following expression
for V:

XF+XN+XR XF+XN + XR
P ‘==- =

Y
(44)

YF+YN+YJ YF+YN+YJ YF+YN+YJ

The right side of the equation, Is expressed by two terms, which
permits considering each term separately. The first component term
determines the efficiency of the plate of any span for motion in an
ideal nonviscous fluid. This magnitude is exactly equal to tan a
because in an ideal fluid the plate is acted on only by normal
forces:

XF + XN
.tga

YF+YN+YJ

The seccnd term

XR

YF+YN+YJ

gives the correction due to the viscosity and, hence, the existence
of surface friction. First of all, the term YF in the denominator
of the expression entering as a lift force due to the hydrodynamic
pressure on the wetted plate is rejected because the term yF rapifly
decreases with increasingvelocity and may be already practically
neglected etartlng at velocities equal to 75 percent of the velocity
in rising on the step. By neglecting this term, that Is considering
the plate in the state of Dlaning where its water displacement is
negligible, the values for- XR, ‘YN, and YJ determined by equa-
tions (35) my be substituted. Then dividing by $ SV02 cos a
there results

XR Cf(l-e)z Cf

YN+YJ= c(2-c) ‘~
- Cf
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Thus, p is given by

Cf (1 - e)y.tga+
6(2-6)

(45)

The variation of w with the angle of attack and aspect ratio
of the plate will now be considered. The family of curves (fig. 20)
gives the relations obtained by equation (45). The friction coef-
ficient Cf, which as been previously shown, depends on the Reynolds
number in the general case, here assumes a constant value equal to
0.003, which correspoms in the case of the turbulent regime to the
Reynolds number Re = 9 ● 106. The change of the magnitude u with
the Reynolds number will subsequentlybe considered. Inspection of
the curves for Cf = 0.003 permits drawing the following conclusions:

For a constant coefficient of friction and a constant aspect
ratio, the value of v has a sharply defined minimum for a certain
angle of attack.

For relatively small deviations from the optimum angle, the
tipairment of the planing efficiency of the plate, that is the
increase in the mgnitude V, will be considerable.

For the friction coefficient Cf = 0.003, the most favorable
angle of attack lies in the range of 4° to 20. With increasing
aspect ratio, the most favorable angle of attack decreases from
4°atA= 0.5 to 2° at A =ca.

The largest value of the planing efficiency is attained for
an infinitely lsxge aspect ratio (A=m). It may be assumed,
however, that the efficiency for aspect ratio A g 10 already
differs only slightly from the value of the efficiency at A =m.
T%US, for A = 10, v = 0.078; whereas for ~ ==, v = 0.0755,
that is for the aspect ratio A = 10 the efficiency is less than
that for A = m by only 3 percent.

Because the analytical part of this paper does not fully take
into account all the factors that impair the planing efficiency of
the plate, it may be expected that an aspect ratio of 7:8 will be
the most favorable. Beyond this limiting value there may be
expected not an improvement,but an impairment of the planing effi-
ciency as a result of separation of the flow and the turbulence,
which have not been considered here.

. .
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The computation of the resistance (fig. 23) with increasing
velocity for plates planing at constant load Y = 18 kilograms and
constant angle of attack a = 4° shows that even with account taken
only of the surface friction there Is for a certain aspect ratio a
limiting optimum value of the efficiency k and further increase
in the aspect ratio impairs the efficiency (fig. 21). Thus, in the
case of the turbulent f~~ thisvalue is ~ . 7.5 and fn,the case
of transition to the turbulent.flowthe optimum value is A = 9.7.

The reason for the impatient of the planing efficiency after
reaching certain values of h .isto be found in the increasing
resistance due to the surface friction for a constant value of the
hydrodynamic resistance XN = Y tan a. In the process of planing,
the frictional resistance is influencedby the following factors.
With Increasing velocity, the Reynolds number drops and approaches
a constant value that for a turbulent regime gives an increase in
the coefficient of friction (a factor that increases the frictional
resistance). With increasingveloclty there is a decrease in the
friction surface area (a factor that decreases the frictional resist-
ance). Because the frictional resistance is proportional to the
square of the velocity, the increase in the friction due to the
increase in velocity is so large that It compensates the drop in
the resistance due to the decreased friction area and together with
the added resistance due to the change of the Reynolds number gives
as a final result an increase in the friction.

The depemience of u on the angle of attack and the aspect
ratio for Cf . 0.003 are shown in figure 20. Now it will be shown
how the optimum values of the angle of attack and the values of v
change as Cf changes.

The minimum values of v as functions of the optimum angle of
attack for three different coefficients of friction Cf equal to
0.0025, 0.003, and 0.004 are plotted in figure 22.

The values of the optimum angle and the values of k, the
efficiency of the plate, are laid off on the ordinate. Two groups
of curves determine the change in the optimum angle of attack and
efficiency k for the three values of Cf, 0.0025, 0.003, and
0.004. The dotted curves refer to the sameaspect ratio. On the
abscissa are laid off the values of the load coefficients denoted by

,— .—.
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Inspection of these curves permits drawing the following con-
clusions:

Wfth,increasing Reynolds number, which in the case or turbulent
motion always corresponds to a decrease in the friction coefficient
Cf, the planing efficiency of the plate improves. At the same time
there is also a decrease in the optimum angle of attack.

For sufficiently small load coefficients (which correspond to
aspect ratios ~ from 7 to 10), the planing efficiency differs
little from the value for infinite span. In accordance with what
has been said, for load coefficients CB < 0.01 there must be
expected not an increase in the efficiency but a decrease due to
the hydrodynamic resistance, which was not taken into account, as
well as the frictional resistance.

The change in the seperate resistance terms the sum of which
is the total resistance of the plate, will now be considered. The
computation for a plate of width 2 . 0.3 meter has here been carried
out assuming the angle of attack constant and equal to 4° and choosing
the velocities over the range O to 22 meters per second. The vertical
load was taken constant and equal to 18 kilograms. The most accurate
results, as has been shown, are to be expected at velocities of pure
planing. Here the curves shown in figure 23 are obtained. The
hydrostatic resistance rapidly increases from zero to the maximum
value that corresponds to the velocity V = 2 meters per second,
then rapidly drops and at V = 10 meters per second is practically
equal to zero, that is, it my be assumed that for velocities above
v . 10 meters per second pure planing occurs.

The form drag, increasing from zero, reaches at the velocity
v . 10 meters per second its maximum value XN = 18 tan 4° and
practically remains constant with further increase in velocity.

In computing the resistance due to the surface friction, two
regimes are assumed. The first regl??eis the gradual transition of
the fluw from laminsr to turbulent and it corresponds to the curve
XRL. The second regime is that of complete turbulent flow, this
case corresponds to the curve x~ . As was to have been expected,
the turbulent regime gives an increased surface friction. The
general conclusion with regard to the i?rictionalresistance 1s the
following: At a certain velocity (V = 6 m/see) the fractional
resistance, stiting from z6ro, reaches a maximum value, then drops,
having minimums at V = 15 and 17.5 meters per second for the
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laminar and turbulent states, respectively,
in velocity slowly increases. In analyzlng
efficiency, the reasons for this phenomenon

anl with further increase
the change in the planing
have been considered.

The total curve of the resistance in the case of the turbulent
regime gives the following character of the flow: At the velocity
V = 6 mtders per second, which is terqed the critical velocity, the
curve has a mximum resistance. Then at V = 15 meters per second
the curve has a minimum, thereafter it slowly increases due to the
increasing frictional resistance. An analogous character of the
flow is also possessed.by the resistance curve for the case of transi-
tion from laminar to turbulent flow.

In conclusion, the results of computationwith the formulas and
curves given in this paper are compared with the data obtained directly
from tests. This comparisonwas made for three cases. The first two
refer to the test data of Sottorf on a plate with 2 = 0.3 meter. In
the first case the plate,.being loaded by a vertical force A equal
to 8 kilograms, was towed with velocity V equal to 4 meters per
second; in the second case, the same plate had the load A . 18
kilogr~ and the correspofiingvelocity
The third case refers to the towing of a
ati experimental curves obtained for the
following conclusions:

The results obtained by computation

was v = 6 meters per second.
seaplane mcdel. The computed
plate permit drawing the

almost coincide with the
towing test results (fig. 24). For the same plate towed at two dif-
ferent velocities and loads, there are two corresponding friction
regimes; namely, at V . 4 meters per second and A . 8 kilograms
there is a transition from lamhar to turbulent flow (equation (26));
whereas at V = 6 meters per second and A = 18 kilograms the fric-
tion

test

has a clearly marked turbulent character.

Figure 25 shows the agreement of the theoretical
results for the seaplane model.

The curve XITIgives the total resistance of the

and towing

model computed
on the assumption-of-aflat bottom. the angle of attack of the &xiel
being taken kom the arithmetic me~n of th~ angles with the water line.
The curves ~ give the same resistance corrected by approximate
formulas for the keel of the model.
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Notwithstanding the fact that the plate is only a rough approx-
imation to the bottom of the model, the agreement between the theory
and experiment is considered to be very satisfactory.

Translated by S. Reiss
National Advimry Committee
for Aeronautics.
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Table 1. - Values of mean relative retardatIon c as function of angle
of attack a and a8pect zatio A.

.

3
I

4 617 9I1O5
_

:!%
4.85

;~,

7:95
8.25
8.40
8.47
8.52
8.s5
8.75

8

4.15
6,10

;:
;ylJ

12:75
1320
13,43
13S56
13.64
13,70
14.00

,

T
2.10

,Ei! 3,00
2.80 3,80
3,30
4.00 :;:
4.50 6.MI
4.80 6.35
4.95
5.04

6.5.

5.09 6.78
5.11 6,82
5.13 6.84
5,23 6,99

0.5
1
1.5

:
4
5
6
7

0,5
0.80

;::
1.40
1.50
1.60
1,65
1.695
1.70
1.705
1.71
1,735

1,05
1.55
1.95
2.33
2,75
3,00
3.20
3.30
3.36
3.39
3.41
3,42
3.49

3.15 3,65
4,50 5,40
5.75 6,85
6,70 7,95
8,15 9.45
9.W 10s0
S&& ;;.IJ

10:06 11:75
10J7 11.87
1023 11.94
1026 11.97
10,50 12.25

4.70 5.20

:: M
10.25 11.30
12.15.13.10
13s0 14.95
w% 16.(KI

16.50
15,12 16.60
15.25 16.95
15.34 ;;;
15.41
15.80 17ko

Table 2. Values of v as function of a and A for C+ = 0.003
J.

2
I

3
I

4 6!7 8
i
I =49 105

-

0,1670
0,1445
0.1335
0.1285
0.1240
0.1215
0.1185
a1160
0.1147
0.1125
0.1115
0.1100
0.1090
0.1055
0.1040
0.1025

!

01970 0.16500.1600
0.14.300,13050.1334
0,12200,1140(),I195
0,10800.10350.1140
0,1o1oO.OW 0.1090
0,09630.09450.1060
0,09260.09260,1035
0,0905o,l.)goo0,10]5
0.0885().0887O,1ooo
0,06550,06700.0990
0.08350.03550,0975
0.08200.08400,0980
0.08053,08370.09s0
0.07950,08200.0940
0,07850.08050.0925
0,07600,07800.0690

0.5 I y:::
I.5 l):1670

0,1470
;..5 0s1360
3 0.1280
3.5 0.1210

0.1180
:.5 0.1145
5 0,1120
6 0,1080

0.1060
: 0,1036

0.1020
18 0.1010
Cm 0.1010

0.1785
0.1615
0.1510
0.1450
0.1405
0,1360
0.1350
0,1327
0,1310
0,1295
0.1270
0.1250
0.1240
C#z&ll

0:1165

0.1930
0.1725
0.1635
0.1620
0.1580
0.1554
0,1525
yg

0:1460
0.1440
0,1410
0.1405
0.1390
0.1380
0.1320

02040
0.1920
0,1650
0,1810
0.1760
0,1730
0.1710
a1680
0,1660
0.1645
0.1620
ym!&I

0:1560
0.1550
0.1490

02200 02340
02090 0.2260
02030 02220
0,19WI02160
0.194502130
0,191002100
0.18900.2080
0.187002050
0.18400.2020
0.18’2502010
0.18000,1930
0,17800.1960
0,17600,1940
0.17400,1920
0.1730O,Iwo
0.16500.1820

Table 3. Values of K as function of a and A for Cf = 0.004

1

—

.65
.250

01910
0.1640
IL14W)
0.1420
0.1380
0,1350
0,1335
0.1320
001310
0.1290

2’ 3

b
o~520 (Jalg@
0,17500,1530
(J.M4S0,105
0,12850.1190
0.11400.IU60
0.10700.1ooo
Oolow 00965
yJ& (p&

0:OY50O:ww
0.09350.0895
o.og~o0.0635
0,08900,0876

U==l5
I

6 I

I
7 84

0,18500,1940
0.15700.1700
0,14300,1570
0,1.350O.Iwo
0.12700.1430
0.1?.20.1370
0.12W 0.1340
0.1MO 0.1330
0,11600.1310
0.11- 0.1290
0.11250,1270
0.11050.1250
0.10600.1210

0.5
1

0,1$30
0.1490
0.1310
0.1230
0.1140
0.1090
0.1060
0.1040
0,I020
0.1000
0.0990
0.0970
0.0945

i.5
2
3
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Table 4. Values M v as function of a- A for Cf = 0.0025

I
9

—

0.2170
0.2060
0,1990
0,1940
0,1890
0.I850
0,1820
0.1790
0,I770
0,1750
0,1740
0,1720
0.16401

10

0.2310
0.2230
0.2170
0,2120
0.2080
0.2030
0.2000
0,1980
0,1950
0.1925
0.1910
0,190U
0,1810

1
I

2 7 8

0.5
I

0.23800.1750
0.16500.1260
0.14400.I070
0,1340U1OW
0.11000.0870
0,10100,0814
0.09630.0785
0.09360.0765
0.012 0,0735
0.09000.0720
0.08990,0710
0.0875U.0700
0,0860omJo

0.law
0.1710
0.1640
0.1591)
0.I530
US1480
o.I450
0.14.30
0.1405
0,1390
0.1380
0,1370
0,1300

0.2010
0.1870
0,1810
0,1760
lJ,1700
0.1660
0,1630
0.1610
0,1s~w
0.1580
0,1560
0.1540
D,1475

oj20Li0.1260o.ifioo;IKG
0.10300.11400.12% 0.14601.5

:
w 0,.W600.12400.1400
)0 0.10300.1180o.l~sa0,0%

0,08510,09800.1140Oolti
0.08200,0Q450.11000.1270
##o 0,09300.10850.1250
.,.. J5 0,0915(J.107O0.1235
0,0770U.owo 0.10550,’220
0,07600,08W 0.10400.1210
0.07450,08700.10250.1190
0.07250.08305,09610.1130

‘Ikble5. Optimum values of k and m as functions of the friction
coefficientCf

Cf= o,a13 c-f=0,0

k
I

%
I

5
1 k

I
a

C(= 0,0025

k z

6.30
7.50
8.75
9.70
10.85
11.4.5
11.95
12,40
12.60
12.75
12,85
12.90

3“49’
3“21’
3°0s
2°49
2’36’
2“33’
2“29’
2°27’
2“26’
2“25’
2°25’
2021’

0.07LK!
0.0490

$!&
0.0215
0.017s
0.0145
0.0120
0.0110
0.01050
O.olal
0.0095

6.30
8.4.5

1::
11.45
12.30
12,90
13,40
13.70
13.90
14.10
14.30

30319

3001’
P46’
P33’
F25’
2W’
2°17
2°15’
2“lY
2°15’
2 14’
2°14’

0.0715
0.0443
0,03W
W260
Odno
().0170
:::$

0:0110
0,01w
(Mow
0.0095

6.00
6.6S

::2
9.40
9.85
1045

4“03’
3°4?
302s
3’12’
2°57’
2=52’
2°46’
‘P43’
2°41’
2°40’20391
‘2%3’

0,0870
0.0560
0,0435
0.0359
0.0260
0.0210
0.0170
0.0145
00125
0,0110
0.O1OO
0.0395

10,75
IIAXI
I1.25
11.35
11,60

Table 6. Values of form drag coefficientCx as function of u
and A

‘Aal1’1213i 415 6/7

O.OW I0.0087
O.M!M 0.0126
0,01200.0160
0.01400.01s6
0,01650,0222
0,01820.0243
0,01920,0256
0.01980,0264
0,02000,0’268
0.02020,0271
0.02030.0273

8

0,01IG
0.0]68
0.(7212
0.0246
0,0292
0,0320
0.0337

9

0.0143
(),~~lo
0.0265
0,03U6
0.0M3
0.0397
O.CM17
0.0429

:%
0,0443
0.0445
0.0456

10

0,0177
0.0256
0.0325
0.03?6
U.(M44
0.0484
0,0510
0.0526
0.0536
O,osfm
0.0542
0.0544
0,0559

,,

WO020 0.000700.0016‘0.00290.0045
0,00030Q.001100.00230/3042O,oaoo
o.ooa350.00140o.oo~ 0.005400083
0.0U040WX)16U0,02350.00620,009/?
0MX45am1900,0041o,ao74o,lJll,j
o.oao470.002100,004600082 0,0126
o.ooa.52o.mm 0.W48 0,00360,0134
0.00055W0230 U&50 0.00390,0138
0.U.)057o.m 0,0051O.oow 0,0140
LMJao580.00230000s2 00091 0,0141
0.00058000235WM52 0.00920,0142
0.00059Wxm5 0,00530.009220,014!Z
0.000590.002390.005350,00950,0145
A I

0,5

;.5
2

0,034s
0.03.50
0,0352
0.0284

8

1: 0;02030;0274
o,~~~ o,0284w



NACA TM 1246 41

Table 7. Values of l~t coefficientC..= C.m + Cfi as function
Lu CLanu A

I

6

—

0,0609
0,0900
0,1142
0,1295
0,1540
0.1700
0,1800
0.1870
0.1913
0.1940
0,1955
0,1960
0,1930

3
I
“4 “7

I
8. 9‘51 2 10

i0,07080.03200,0904
0,1026O,I21O0,1330
0.13000.15150.I680
0,15100,17500.1950
0.1790.0.20550,2280
0,19700,22500.2500
0,20900,23750.2640
0.2160().24500,2710
o.~’2~0,2500o,~~
0.2230(),25200,2790
0;22400.25350.2800
0.22400.25400,2810
0.22900.25900,2890

0.03050,0415
0,04M 0,0601
0,05600.0745
0.066500860
0.0800U.103O
0,08800.1150
0,09300,1230
0,09600.1?70
0.W8130.1300
0.09900.1310
0.1ooo0,1320
0,1ooo0.I320
0.10200.1350

0,0110
0.0165
Cy&

0:02)5
0.0300
0.0720
0,0329
0,0332
0,0332
0,0338
0,0338
0.0350

0.0193
0.0300
0.0383
0.0435
0.0520
0.0580
0,0615
0,0640
o,c655
0,0660
0.0670
00672
0.0685

0,0515
0.0750
0,0950
0,1090
0,1300
0.1440
0.1520
0,1570
0.1600
0,1617
0.1625
0.1630
0,1670

0,1050
0.1505
0.19UU
0.2150
0.2.500
0.2740
0.28!)0
0.2980
O.mlo
gm:

0:3090
0,3180

Values of load coefficientCR = C~/~as f~ction ofTable 8.
aand A-”

] 2 3 5 6
I

7 8
I

9
I
104

0.5 0022 0,03860.0610
0,016500300 0,0450
0.01370.02570,0374
0.01160.021750,03325
0,009180,01730,0267
0.00750,0145().0220
0,00640,01230.0186
0.005480,010660,0160
0.004750.009350,0140
0.034150.0W250.0124
0.003750,007450,0111
0.003380,006720.o1oo

0,12180.1416
0.09000.1026
0.07630.0868
0064750.0755
0.05130.0597
0.04250,0493
0,03600.0418
0.03120.0360

0,083
0,0601
00496
0.0430
00344
0.0284
00246
0,0212
W186
0,0164
0.0147
0.0132

0.1030
0.07s0
0.0535
0.0545
0,0434
y33S036

$&

0$;:;

0:0163

0.1640
0.1210
0.1010
0,(3875
0,0685
0,0W33
Im&

0.0357
0.0315
0.0282
0.0254

0.18080.2I00
0.13300.1505
0,11200.I266
0.09750.1075
0.07600.0834
0.06250.0686
0.05280.0578
0.04520.0497

o@274I0.0314 0:03940.0435
0,03490.0384
0,0310600342
0,02810.0309

0h24250:0279
0,02170.0249
0.01960.0224

II

Table 9. Values of ratio ~/Cf as a function of a and A

4
I

53 6 7 8 91 2

0,960 0.946
0,940 0.923
0.924 0.903
0.912 0S8
0,894 0,868
0.884 0,855
0,876 0.846
yg :;;;

ok66 0:834
0.865 0.833
0.864 0.832
0,863 0,830

0,920
0,888
(@z
0,840
0,812
0,794
0,783
0,776
0,771
0,768
0.767
0.766
0,770

0.910
0,874
0,814
0.822
0.788
0.767
0.754
0.746
0.742
0.740
0,738
0,737
0,740

0.898
(y&

O&

0:739
0.725
0,715
0.709
0.706
0705
0.705
0.710

0,884
0.840
(MO4
0,776
Q736
0.710

~:;

(.):679
0.677
0,675
0.680

0.5
1

0,930
0.970
0.963
y!&

0:939
4),935
0.933
0.931

%%
0,93)
0,930

0.970
0.956
0.944
0,934
0.920
0.911
0.905

:%
0.899
0.899
0.899
0.9’M)

i.5
2
3

m
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Figure 6. - Variation of hydrostatic and hydrodynamic lift forces ex-
pressed in percentage of sum with angle of attack.for planing plate
atV= 6 meters per second, load Y = 18 kilograms, and width 1 = 0.3

meter.
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Figure 7. - Variationof frictionandformresistancesexpressedin
percentageof am withangleof attackfor a flat-plateplaning
at V = 6 metersper second,loadY = 18 kilograms,andwidtht =

0.3 meter.
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Figure 8. - Curve of relationbetweenhydrostaticand hydrodgnamic Mft
forces computedfor plate planingat angle of attack a = 4 end load

Y= 18 kilograms.
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Figure 16. - Dependence of lift force C

Y = CF’ CF
on angle of attacka and

aspect ratio A.
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Figure 18. - Dependenceof the moment coefficient~ on C.
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Figure 20. - Dependenceof magnitudep , the reciprocalof the pl.s
efficiency,on angle of attacka and aspectratio A. The frict~

coefficientCf was assumedconstantand equalto 0.003.
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Figure 21. ~ Curves of Reynolds nunber R , aspect ratio X and reciproal
of the planing efficiency p for a glate of width 1 . 0.3 meter and load

Y = 18 kilograms planing at angle of attack u . 4°.
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Figure 22. - Variation d optimum angle of attack ccand corresponding
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Figure 23. - Computed resistance curves for a plate planing at angle
a= 40 ,loadY= 18 kilograms, and width 2 = 0.3 meter.
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